
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1. Summary of 5 study sites.  (*WW = winter wheat; SL = spring  legume; SB = spring barley; SW = spring wheat; WP 

= winter pea; §disced during potato sequence; NT = no-till). 

 

Results 
Climate - Present:  
• A increase in MAP was associated with an increase in SOC (r = 

0.76) and total N (r = 0.83), while an increase in MAT was 

associated with a decrease in SOC (r = -0.64) and total N (r = -0.70). 

 

Climate - Future:  
• By 2050, for the inland PNW, some models predict a 5% rise in 

MAP and 2.2oC rise in MAT, and by 2100 a 15% rise in MAP and a 

3.6oC rise in MAT. 

• Ratio of MAT/MAP under future scenarios predicts a decrease in 

soil C and N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Future climate scenarios and SOC and total N across four dryland study sites (SOC = soil organic carbon; MAT = 

mean annual temperature, MAP = mean annual precipitation) (Notes: Present average for each site represents average 

across all treatments. MAT/MAP ratio for 2050 based on 2.2oC rise in MAT and 5% increase in MAP based on current MAP, 

and for 2100 based on 3.6oC rise in MAT and 15% rise in MAP based on current MAP). 
 

• Microbial response is uncertain under future climate scenarios, 

but promoting improved soil structure and aggregation is critical 

to protecting soil C and N and enhancing soil health. 

 

POXC and SOM Stabilization: 
• POXC displayed a significant relationship with non-hydrolyzable C 

(r = 0.84) and N (r = 0.80), and hydrolyzable C (r = 0.90) and N (r = 

0.90). 

• Therefore, POXC is indicative of stabilized SOM, as was also 

supported by Culman et al. (2012), who showed it was sensitive to 

compost additions. 

• A coupling of POXC with more labile measurements of soil C and 

N can provide complimentary information on soil health and help 

inform management decisions aimed at improving soil health. 
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PRSTM Probes: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. POXC and PRS N across study sites (See Table 2 for number). 

 

C Mineralization: 

 
 

                                                     

 

 
 

 

 

 

 

 

 

 

 

 
 

 

Figure 4. POXC and Cmin across study sites (See Table 2 for number). 

 

Soil Health Index: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. POXC and SHIndex across study sites (See Table 2 for number). 

 

• Select PRSTM N along with POXC for monitoring N mineralization 

and improved fertilizer management. 

• Select Cmin along with POXC for monitoring microbial activity. 

• Select SHIndex along with POXC for monitoring microbial activity 

and informing cover cropping legume/grass mixtures. 
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Figure 1. Location of study sites within REACCH study 

area, including agro-ecological classes (AEC).  
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Table 2. Results for POXC and three labile measurements across five study sites (significant differences between 

treatments within a site indicated by different letters ( p < 0.10); numbers in parenthesis is CV).  

• Measure of microbial 

activity 

• Not significantly related to 

qCO2 

• Detected differences only at 

Pendleton between Till and 

NT 

• Weak correlation with PNM 

(r = 0.28) and PRS N0-28d (r = 

0.28); therefore may not 

always be a good indicator 

of nutrient mineralization  

• Capture plant available 

nutrients, linked to fertilizer 

recommendations 

• Significant correlation with 

PNM (r = 0.40) and qCO2 (r = 

-0.29) 

• On average, higher CV (35) 

than Cmin0-1d (22) and  

    SHIndex (19) 

• Captures importance of C/N 

ratio in nutrient dynamics 

• Index range is 0-50; 0-14 

more appropriate for inland 

PNW (Morrow, 2014) 

• Significant, but weak 

correlation with qCO2  (r = -

0.29),  PNM (r = 0.38) and 

PRS N0-1d (r = 0.48) 

• Detection of treatment 

differences not improved 

above just Cmin0-1d 

POXC PRS
TM

 N0-1d Cmin0-1d

Site Treatment
†

(g kg
-1

 soil) (ug 10 cm
-2

 24 hrs
-1

) (g kg
-1

 soil)

1) WW/SB/SL - NT 0.466 a (8) 25.6 (55) 0.081 (16) 7.2 (19)

2) WW/SB/SL - Till 0.388 b (6) 37.63 (44) 0.072 (23) 8.8 (27)

3) WW/SL/SW - NT 0.399 (11) 39.9 (45) 0.047 (9) 6.1 (22)

4) WW/SB/SW - NT 0.416 (9) 32.5 (50) 0.064 (53) 7.9 (37)

5) Alf/SC/SL (organic) - NT 0.358 (11) 26.8 (30) 0.056 (50) 5.6 (33)

6) Perennial Tall Wheat Grass 0.361 (8) 17.9 (32) 0.040 (8) 4.7 (7)

7) Native/CRP Grass 0.349 (10) 13.1 (35) 0.045 (29) 5.4 (16)

8) WW/ NT Fallow - NT 0.315 a (10) 19.6 (35) 0.055 a (3) 5.8 a (4)

9) WW/Pea - NT 0.305 a (11) 25.3 (26) 0.060 a (12) 6.0 a (7)

10) WW/Fallow - Till 0.193 b (48) 15.0 (40) 0.038 b (7) 4.1 b (8)

11) WW/WP - NT 0.230 a (4) 25.0 a (12) 0.054 (24) 5.4 (15)

12) WW/NT Fallow - NT 0.209 b (10) 11.3 b (13) 0.041 (34) 4.3 (17)

13) WW/SB/NT Fallow - NT 0.225 ab (3)  6.9 b (51) 0.051 (42) 4.9 (28)

14) WW/Fallow - Till 0.183 c (5)  8.7 b (45) 0.034 (16) 3.6 (13)

15) WW/Sw. Cn./Potato - NT 0.162 (10) 21.5 (35) 0.050 (14) 4.8 (32)

16) WW/Sw. Cn./Potato - Till 0.139 (28) 18.8 (9) 0.049 (18) 5.2 (13)
Prosser

SHIndex

Kambitsch

PCFS

Pendleton

Moro

 

 Soil Health  
The capacity of a soil to “ provide for human sustainability by functioning as 

a medium for plant growth, and as an environmental buffer and filter for 

cycling water, altering chemicals, and cleaning air”. (Smith, 2002)  
 

• SOM is central to critical soil processes such as nutrient cycling, soil   

structure formation and water infiltration.  

• SOM is a major source of plant nutrients and directly linked to potential 

productivity (Smith, 2002).  

• Components of an assessment should be easily accessible, low cost, 

and sensitive to management and climate.  

 

Labile and Stabile SOM  
• The stable pool contributes to long term increases in SOM; however it is 

slow to respond to changes in management.  

• The labile pool drives nutrient cycling and impacts many biologically 

related soil properties that are critical to soil productivity.  

 

 

 

 

 

 

 

 

REACCH  
• Our research includes five sites that span four agroecological classes as 

part of the project “Regional Approaches to Climate Change” (REACCH) 

(Fig. 1).  

 

• REACCH will enable researchers,  

    stakeholders, students, the public, 

    and policymakers to better  

    understand the interrelationship of  

    agriculture and climate change and 

    to develop mitigation and  

    adaptation strategies.  

 

 

 

 

 

 Objectives  
• Examine present and future climate scenarios for the inland Pacific 

Northwest and potential implications for soil health.  

• Present labile and stabile measures of SOM and their sensitivity to 

management and ability to act as soil health indicators and sensitivity to 

important soil processes, particularly PNM (28-day anaerobic potential 

nitrogen mineralization) and qCO2 (microbial metabolic quotient, 

     
 24݀−0݊݅݉ܥ

17݀−0݊݅݉ܥ -

𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑐𝑎𝑟𝑏𝑜𝑛
, a measure of microbial efficiency).  

 

Methods  
• Soil samples (0-10 cm) were collected from the five study sites between 

June and July, 2013 (Table 1).  

• For cropping systems which are winter wheat (WW) based, the WW 

portion of the rotation was sampled; for other cropping systems, the crop 

present during sampling is noted.  

• Laboratory analysis included total C and N, permanganate oxidizeable 

carbon (POXC), carbon mineralization (1, 3, 10, 17, and 24 days), water 

extractable C and N, acid hydrolysis, microbial biomass, PNM, and 1-day 

PRSTM (western Ag Innovations, Saskatoon, Canada) probe 

incubations.  
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