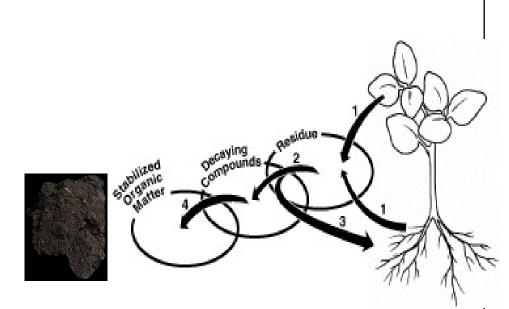
SOIL ORGANIC CARBON DYNAMICS IN PENDLETON TILLAGE FERTILITY LONG-TERM EXPERIMENT

Rajan Ghimire, PhD

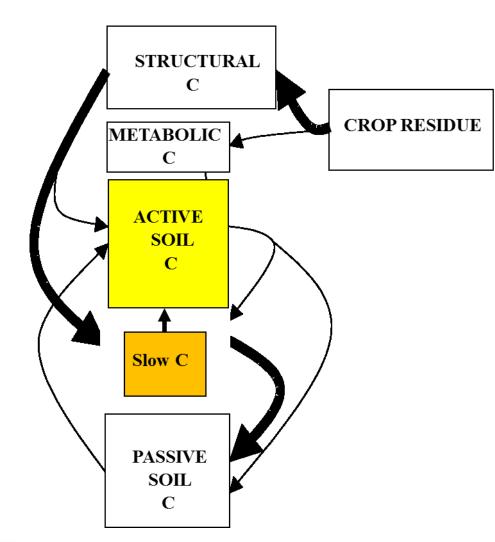
Stephen Machado, PhD

REACCH Seminar Series in Climate and Agriculture


April 30, 2015

Pendleton long-term experiments

- Long-term experiments (LTEs) serve as a valuable resource for eastern Oregon producers to understand impact of agricultural management practices on soil quality and crop production.
- Studies at Pendleton long-term experiments revealed nearly 50% soil organic carbon (SOC) loss from o-60 cm soil depth in winter wheat – summer fallow system.
- We aimed to understand how SOC dynamics changes with tillage and N management in tillagefertility long term experiment.



Soil organic carbon = Soil organic matter * 0.58

Labile carbon pools

Active, or labile, SOM: Annual turnover Mineral C & N Mineralizable C & N dissolved organic C & N; Microbial C & N; light fraction C & N.

Slow, or protected, SOM:

Decades;

Same as labile, but protected from mineralization within soil structure.

Passive, or stable, SOM:

Centuries to millenia;

Humus;

Mineral-associated C & N.

Modified from Norton et al. (2004)

Research objectives

- Evaluate the effects of tillage and fertilizer N management on soil organic carbon dynamics:
 - 24-hr soil respiration
 - Potentially mineralizable carbon
 - Microbial biomass carbon
 - Metabolic quotient (qCO₂)

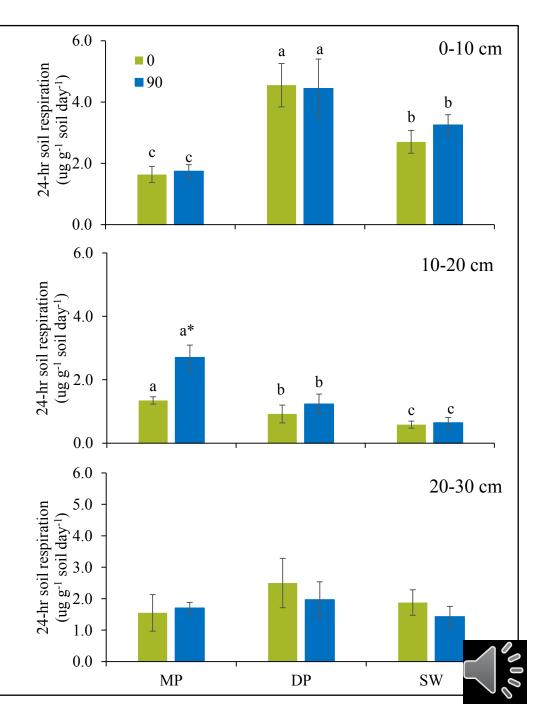
Tillage fertility long-term experiment

- Experiment was established in 1940.
- Evaluates winter wheat summer fallow system under three tillage systems and five N rates.

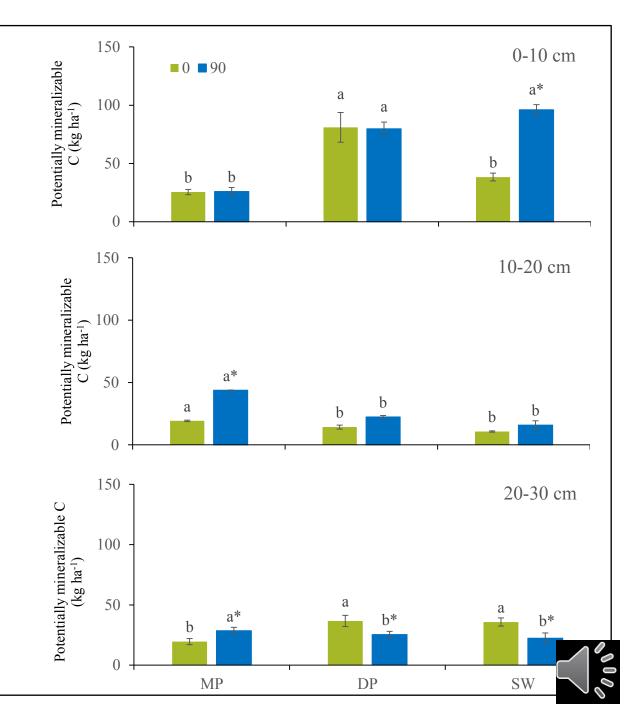
Main plot treat	ment	Tillage o	Tillage depth (cm)		
Tillage	Equipment				
MP	Moldboard plow	Moldboard plow		23	
DP	Offset disc	Offset disc		10	
SW	Subsurface swee	Subsurface sweep		15	
Subplot treatment					
Nitrogen rate		Nitrogen (kg ha⁻¹)			
	1941-1951	1952-1961	1962-1987	1988-2010	
1	0	0	45	0	
2	11	34	45	45	
3	11	34	90	90	
4	11	34	135	135	
5	11	34	180	180	

Soil sampling and analyses

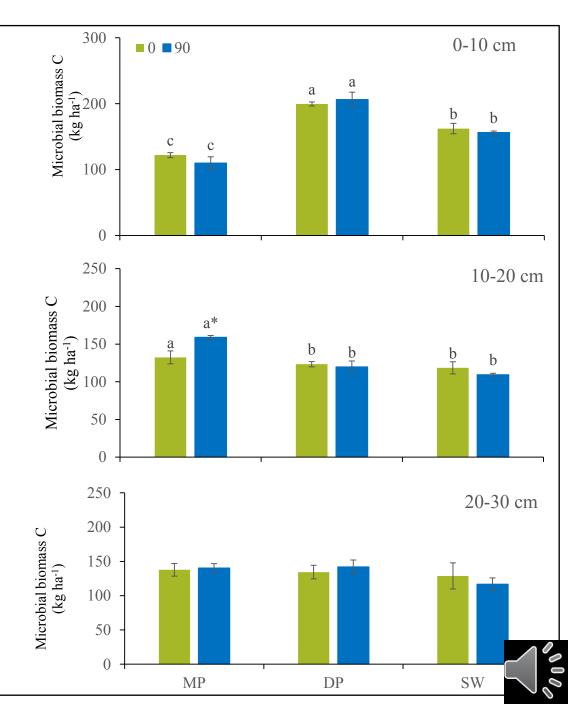
- We collected soil samples in summer 2014 form plots that received 0 and 90 kg N ha⁻¹ under each tillage system.
- Potentially mineralizable C was determined by aerobic incubation method (Zibilnske, 1994).
- Soil microbial biomass C was determined by fumigation incubation method (Horwath and Paul, 1994).
- Microbial metabolic quotient was determined as ratio of soil respiration during a week incubation to soil microbial biomass C (Nie et al., 2013)



24-hr soil respiration

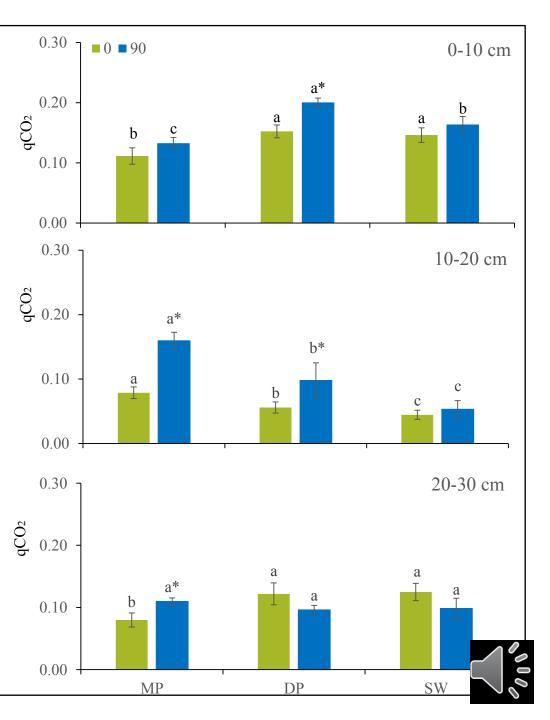

- 24-hr soil respiration was greater under disk tillage than under sweep and plow tillage in 0-10 cm depth.
- It was greater in soils under plow tillage in 10-20 cm depth.
- Effect of N application was observed only at 10-20 cm depth of plow tillage system.

Different lowercase letters indicate tillage effects within N rate and `*' indicate N rate effects within a tillage system.


Potentially mineralizable carbon

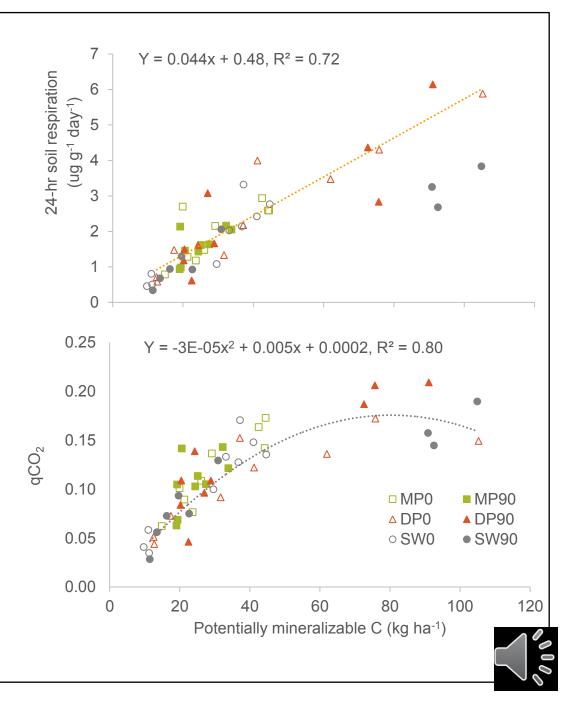
- Soils under disk tillage had greater PMC content than other systems in 0-10 cm depth.
 - Response of N rate was observed only in Sweep system.
- Soils under Plow tillage had greater PMC content than other systems in 10-20 cm.
 - Response of N was observed in Plow and Disk tillage systems.
- Soil PMC in 20-30 cm depth profile was influenced by both tillage and N application.

Soil microbial biomass


- Microbial biomass C content was greater under Disk than under sweep and moldboard plow tillage in o-10 cm depth.
- Plow tillage system had the largest microbial biomass in 10-20 cm depth.
- No effects of tillage and N management in 20-30 cm depth.

Soil metabolic quotient

- Soil respiration per unit microbial biomass
- qCO₂ was influenced by N rate as well as tillage systems in all soil depths.
- qCO₂ was greater under disk tillage than other tillage systems in 0-10 cm.
- In no N addition treatments, disc and Sweep system had greater qCO₂ than under moldboard plow system in 0-10 as well as 20-30 cm depth.



Soil microbial activity

Indicators of soil microbial activity:

A) First 24-hr soil respiration

B) Soil metabolic quotient increased with increase in the amount of PMC.

Conclusions

- Reduced-tillage approaches such as disk and sweep system can increase soil organic carbon accrual at surface soil through their effects on soil mineralzialbe C and soil microbial biomass.
- Nitrogen addition compliments to the effect of tillage to increase soil organic carbon.

Thank you

- Larry Pritchett
- Rebecca Graham
- Prakriti Bista
- Wayne Pulmsky
- Joe St Claire

