REACCH Model Integration, Scenario Design and Preliminary Results

John Antle

Agricultural and Resource Economics Oregon State University

REACCH 1st Annual Meeting Feb 29-March 2 2012

In this presentation:

- Project goals and the role of modeling
- Technology and socio-economic scenario design from Objectives 1 and 4 Teams
- Objective 1 Team approach to data and model integration
- Some (very!) preliminary example of results from a proof-of-concept exercise: impact of climate on the winter wheat-fallow system
- Next steps

The Impact Assessment Challenge

- How do current and possible future PNW ag systems perform under present and possible future climate, technology, economic, social and policy conditions?
- Approach: assess impacts of climate change on economic, environmental and social *outcomes* using quantifiable *indicators, taking into account spatial heterogeneity in systems and impacts*
- Outcomes
 - economic: production, income & distribution, employment
 - environmental: soil and water quantity & quality; GHG emissions etc.
 - social: health, gender, age, community
- Indicators
 - mean or aggregate (farm, regional)
 - variability and risk of exceeding critical thresholds (vulnerability)

The Impact Assessment Challenge (cont.)

- This is a hugely complex challenge!
- To make IA manageable, we carry out different types of *simulation experiments*
 - reference scenarios for model evaluation, validation, intercomparison
 - *sensitivity analysis*, varying some parameters while holding others constant
 - pathway analysis to explore possible future states of the world
- IA simulations involve multiple dimensions:
 - climate (base, future)
 - production system (current systems, adapted systems)
 - policy (mitigation, other)
 - socio-economic conditions (prices, costs of production, farm size etc.)

Data, Model and Scenario Integration

RCP = Representative Concentration Pathway

SSP = Shared Socio-Economic Pathway

RAP = Representative Agricultural Pathway

RCPs, SSPs and RAPs

• ag, conservation, other policy

Technology and Socio-Economic Scenario Design: Objective Teams 1 & 4 Meeting, Hood River, Feb 10 2012

AEZ	Conventional System	Location of expt stations and farmer field sites	Alternative Management Strategies and Research Variables			
			Tillage	N Management	Crop Intensity	Recycled C and N
2	w. wheat-s. wheat-s. legume; chisel plow; field scale NH3	Moscow/Pullman	direct seed ⁰	site-specific N ^O	perennials ⁰ , winter crops ⁰ , oilseeds/legumes ⁰	biosolids ^N
3	w. wheat-s. cereal-tilled fallow; field scale NH _{3;} deep soil	Pendleton	direct seed ⁰	NUE assessment ⁰	perennials ^o , fallow replacement, oilseeds ^o	animal manure ⁰
4	w. wheat-s. cereal-till fallow; field scale NH ₃ ; shallow soil	Davenport, St. John, Okanogan	chemical fallow-direct seed ⁰	site-specific N ^N	perennials; flex annual cropping ⁰ / oilseed/legume ⁰	biosolids ^N
5	w. wheat-fallow; field scale NH ₃	Lind/Moro/ Douglas/Ralston	undercutter- fallow ⁰	NUE assessment ⁰	perennials; ww-s. oilseed-fallow	biosolids ⁰
6	irrigated tilled corn-w. wheat- bean; field scale UAN	Othello	direct seed ^N	N catch crops ⁰	perennials; winter cover crops ⁰	biosolids ^N

Table 1. Description of conventional and alternative management strategies by location and AEZ.

Superscript 'O' designates existing old study while 'N' represents study to be initiated in the ACCPNA project.

Proposed Scenario Design

Climate: 2 RCPs x 3 models

Base Systems:

- High rainfall: Winter Wheat-Spring Wheat-Spring Legume, plus CRP to annual crop transition
- Intermediate rainfall: Winter Wheat-Spring Wheat-fallow plus CRP to annual crop transition
- Low rainfall: Winter Wheat-fallow plus CRP to annual crop transition
- Irrigated: Potato-Winter Wheat-Corn

Alternative Systems:

- Adoption of conservation, direct seed or no-tillage practices
- Improved N management
- Intensification (reduction of fallow) and diversification (replacement of fallow and existing crops by new crops)
- Conversion of Conservation Reserve Program acreage to crop production.

Socio-Economic Scenarios: 2 RAPs + policy scenarios TBD

Proposed Scenario Design (cont.)

Some Issues & Challenges:

• "curse of dimensionality":

4 AEZs x 6 climates x S Systems x R Socio-econ scenarios = 24 x S x R = ???

- how to estimate productivity and costs of future technologies
 - need to include more "current alternative" systems as future scenarios?
- linkage of scenarios to "dynamic AEZs"
- representation of uncertainty in climate, crop and econ models
- quantifying "adaptation likelihoods" or adaptive capacity

Modeling Team Proof-of-Concept Exercise

- Goal: test methods & process for linking climate data to CropSyst and TOA-MD
- Use simplest case: WW-F system in REACCH region
- 2007 ag census data:
 - 978 "winter wheat" farms with 2.26 million cropped acres, average farm size 2308 ac
 - 860,000 acres in WW wheat-fallow
 - average yield 51 bu/ac, average 38% in fallow
- IMPORTANT DISCLAIMER: THE FOLLOWING MATERIAL IS ONLY TO ILLUSTRATE THE METHODS BEING DEVELOPED AND NOT FOR QUOTATION OR CITATION.

CropSyst Model bsyse.wsu.edu/CS_Suite/CropSyst

- Multi-year, multi-crop, processbased, daily and hourly time step cropping systems model.
- A handful of key crop parameters are "observable" by simple field measurements.
- Used extensively in the PNW and around the world.
- Provides reliable estimates of crop growth and yield in response to weather, soil, water and N availability, and management.

TOA-MD Model: Multi-Dimensional Impact Assessment *tradeoffs.oregonstate.edu*

- A novel simulation approach to assessment of economic, environmental and social impacts of technology adoption, environmental change, and ecosystem services
- Integrates various types of data (crop model simulation outputs, experimental data, expert knowledge, economic, environmental and social data) to represent a population of heterogeneous farms
- Simulates "impact experiments" to measure the effects of environmental change or policy change
- Simulates "adoption experiments" under specified environmental and economic conditions
- Used globally by researchers and institutions including CGIAR centers and AgMIP

Proof-of-Concept Exercise

A "Proportional Relative Yield" Model to Link CropSyst Simulations to TOA-MD

- B = simulated crop yield with current climate
- C = simulated crop yield with future climate
- R = C/B
- μ_{R} = mean of R, σ_{R} = std dev of R
- y(1) = expected yield for system 1
- y(2) = R y(1) =future expected yield

Key point: most previous studies use only averages over large areas, and would treat this region as one "representative farm" (e.g., previous US assessment)

- CropSyst simulations used to estimate μ_R and $\sigma_{R.}$
- Ag Census data used to estimate the y(1) distribution
- These two sets of parameters can be used to calculate the spatial distribution of y(2) and opportunity cost (distribution of gains and losses) needed to implement the TOA-MD model

Climate Data

- A new gridded dataset of historical meteorological data was prepared
- CMIP3 downscaled data provided to the team
- Work on CMIP5 and NARCCSP is in progress

Growing Degree Days (base 5.5°C), 1979-2010 Climatology

CropSyst PROOF OF CONCEPT TEST SIMULATIONS

Land suitability (WW = dark blue) Simulated WWF yield differences (future minus historical)

WWF Farm Statistics and Relative Yield Distribution PROOF-OF-CONCEPT EXERCISE Ryield = 2020-2035 yield/1995-2010 yield

WWF Farm Statistics 2007 Ag Census Ryield distribution

978 farms 2.26 x 10⁶ cropped acres + fallow 860,000 ww acres

	Mean	Std					
Farm size (ac)	2308	782					
Yield (bu/ac)	51	13					
Fallow (%)	38	8					
Ryield	1.25	0.73					

Why is mean Ryield > 1?

WWF Yield Differences and Mean Relative Yields by Zip Code Area PROOF OF CONCEPT TEST SIMULATIONS

Climate Impact and Adaptation PROOF OF CONCEPT EXERCISE

- Simluate impact of CC on WWF without adaptation
- Simulate WW variety adapted to future climate
- Assumptions:
 - mean yield + 10%
 - more resilient variety increases yields in marginal areas, but lowers yields in favorable areas (spatial variance decreased 25%)
 - no change in cost of production
- Only WWF impacted by climate in this exercise

TOA-MD Climate Impact and Adaptation Analysis PROOF OF CONCEPT EXERCISE

Gains and Losses from CC and Adaptation PROOF OF CONCEPT EXERCISE

Gain from Climate Change (% change in mean net returns)

Next Steps

- Evaluate feasible climate, crop system and socio-economic scenarios
- Test and implement procedures to automate simulations, document and store input data and outputs
- Develop procedures for integrating experimental, modeled and expert data to parameterize models
- Develop procedures for interpretation and communication of simulations and use with qualitative data

Discussion

- How can we bring together growers, REACCH scientists, other stakeholders to
 - Identify and "design" future systems & scenarios?
 (Global Futures Project)
 - Better understand factors driving economic, environmental and social sustainability of these systems?
 - Effectively communicate what we are doing and what we are learning?