

- Approach
 - Eddy covariance flux measurements
 - instrumented towers at six sites
 - Continuous, automated operation year round for CO₂, H₂O
 - "hot moment" flux measurements for N₂O
 - Automated chamber operations
 - Multiple chambers for a matrix of treatment methods
 - Initial deployment at the Cook Agronomy Farm (CAF)
 - Water erosion and N, C loss
 - C and N measurements in water runoff at several annual cropping sites
 - Wind erosion and N, C loss
 - C and N analysis of archived dust storm sediment samples
 - Collection of new samples at the Lind tower site

- Flux Tower Deployment, Operations and Plans
 - Flux sites

to Climate Change

- Systems installed and running at CAF (no-till, annual cropping) and at Lind (wheat fallow rotation)
- Sites identified for conventional till near CAF and higher rainfall site near Moscow, ID; towers to be deployed in March/April
- Irrigated sites and CRP site need to be located
- Flux Data
 - Automated data retrieval each night, displayed on an internal web site for QA purposes <u>http://lar.wsu.edu/reacch/reacch_cfnt.aspx</u>
 - Development of post-processing of fluxes for final data storage
 - Begin using Cropsyst for analysis of flux data
- Preliminary N₂O flux deployment at CAF
 - Building trailers for N₂O instrument for spring deployments
 - Investigate use of REA method for long term N₂O flux measurements

CAF pre-harvest, carbon accumulation

CAF post-harvest, carbon respiration

Objective 2: Chamber Monitoring Deployment

	Cook Farm GHG Monitoring Chamber Plot Map November 2011											
Rep		1.07 m										Rep
		1-H	2-D	3-G	4-A	, 1m ,	9-A	10-C	11 - H	12-B	Î	
1	1.22 m	5-C	6-E	7-F	8-B		13-D	14-G	15-F	16-E		1
					1	2.13 m						
•		1-C	2-A	3-D	4-G		9-B	10 - H	11-D	12-A		
2		5-F	6-B	7-H	8-E		13-F	14-C	15-G	16-E		2
											16.15 m	
•		1-E	2-H	3-В	4-G		9 - B	10 - D	11-A	12-C		
3		5-D	6-A	7-F	8-C		13-H	14-E	15-G	16-F		3
4		1-E	2-G	3-D	4-A		9 - H	10 - B	11-F	12-E		
		5-H	6-C	7 - B	8-F		13-G	14-D	15-A	16-C		4
		-				9.56 m						
	Red Block - Non-Irrigated Block - Irrigated											North

•Microplot gas-flux field study at the CAF.

•Treatments consist of four N levels, two glucose levels and two water levels.

- Assessing the Effects of <u>Scale</u> and <u>Management</u> on C, N Export
 - Field Scale Catchments (~1 km²)
 - No-Till
 - Conventional Tillage
 - Watershed Scale (~90 km²)
 - Basin Scale (~6,500 km²)

Objective 2: Water Erosion Monitoring C, N loss

Surface Runoff Flume at CAF

Examining both surface and subsurface C and N contributions

Drain Tile at CAF

- Load measurements based on event-based measurements
 - Flow, Sediment, Nitrate, Ammonia, DOC, POC

 Incorporate carbon loading into a simple web-interface program for education and outreach

