

Rotational N recovery: What are we missing in single season estimates?

REACCH seminar series Tai McClellan Maaz

Global estimates for crop recovery of N range from 30 to 50%

Does this mean the unrecovered N is lost???

Single season N fate

Single season N fate

Multi-year fertilizer fate

Measuring residual effects of fertilization on a cropping sequence?

<#>

How can we estimate rotational N recovery to compare cropping systems?

Total N balance approach

Unger and Huggins, 2014

<#>

Modified multi-year N balances

Ralston (Wheat-fallow)

1996-2000	Inputs	Outputs	Balance		
				Grain+	Missing
Cropping sequence	N _{fert}	Grain N	Grain	Soil	N
	lb	ac ⁻¹	*	**	lb ac ⁻¹
WW-F	200	171	0.85	0.81	51
SW-Chem Fallow	204	147	0.72	0.82	53
Cont. NT HRS-SB	396	277	0.70	0.76	113
Cont. NT HRS	495	304	0.61	0.64	131
* Crain N balance – Crain N/N					

* Grain N balance = Grain N/N_{fert} **Total N balance = (Grain N+ Final Root Zone Inorganic N) $/(N_{fert} + Initial Soil Inorganic N)$

Conclusions

- 1. Multi-season approach
 - a) Soil N is a major contributor of plant N
 - b) Accounts for differences in N recycling and retention from year to year
 - c) Need to monitor soil organic N
- 2. Rotational estimates vs single season
 - a) Exceed, if increases in N storage
 - b) Equal to, if no change in N storage
 - c) Less than, if decreases in N storage

Acknowledgments

- Rich Koenig, Dave Huggins, Frank Young, Ian Burke
- Aaron Esser, Derek Appel, Dennis Pittmann, Rod Rood, Ron Sloot (Wilke Farm, Davenport, and PCFS, Pullman)
- Lab for Nutrient Cycling and Rhizosphere Ecology
- Funding sources: WSU ARC project 9024, NSF IGERT Award 0903714 (NSPIRE), WA Oilseeds Cropping Systems Project 3016, USDA NIFA Award #2011-68002-30191 (REACCH).

