

Transitioning Cereal Systems to Adapt to Climate Change

November 13-14, 2015

Understanding the importance of managing climate risk in the restoration and conservation of natural capital in the dryland cereal systems

Anthony Whitbread Research Program Director ICRISAT, India

Understanding the importance of managing climate risk in the restoration and conservation of natural capital in the drylands

Outline

- The importance of the Drylands to sociopolitical situation and development.
- Where ICRISAT works
- Strategic and tactical responses to managing climate
 - Examples from Australia
 - Examples from India

Dryland Systems

- 65 % of the worlds agricultural lands fall into the category of Drylands
- 2.5 billion people live in the Drylands
- The majority of the poorest people live in semi-arid areas
- 644 million people are the poorest of the poor
- 1/3 of these rely on agriculture for their livelihoods
- 42% (27) of children in the Drylands of Asia (SSA) are malnourished
- Mixed (crop-livestock) farming systems are predominant agricultural system

Tradeoffs and scale

Markets

Community, watershed, region...

Farm, household, livelihood...

Field, flock, forest

Microbe-plant

ICRISAT

ICRISAT locations in the semi-arid tropics

Dryland Systems

Global challenges

- Poor governance and political instability
- Lack of political will in putting Drylands on the agenda
- Lack of infrastructure, institutions and human capacity
- Market failure or unfair policies creating skewed markets
- Gender inequality

Farm level challenges

- Land fragmentation (e.g. Eastern Ethiopia- land size 0.5-0.25 ha)
- Labour cost and availability
- Conflict for resources (water, grazing rights)
- Severe environmental degradation
- High inherent climate variability and severe threat of higher temperatures/lower rainfall and higher variability due to climate change

Managing climate Strategic and tactical responses

Strategic

- Historical and future climate analyses
- Design of the farm system for resilience (extreme events/ food security) and market opportunities (commercialisation)
- Infrastructure to enhance resilience.

Tactical (pre- and in-season responsive management)

- Climate forecasting (long, medium and short term)
- pre-season enterprise planning
- in-season responses to prevailing weather

In the drylands, there is no average

Wheat water use efficiency: 1983-2002

Australian farming is risky 75% profits in 25% years; losses in 50% years

 Actual farm data – southern Mallee farm (5200ha), 80% crop and 20% livestock (by area) Costs: Inputs, Machinery, Labour and Financial

Data courtesy of Harm van Rees (CropFacts

Carwarp EM & elevation map with soil characterisation in zones of low, moderate and high EM.

Zone 1 – Hill tops

Issues (water repellent, prone to root disease, high risk of wind erosion) Yield limited by nutrition Consider in-season N applications

Zone 2 - Midslopes

Variable production Manage zone strategically In season decisions on input levels.

Zone 3 - Flats Poor yielding in dry years but may perform well in wet years Seldom nutrient limited so reduce inputs In season decisions on end use (graze/hay/grain)

Hoffmann et al., Whitbread 2015. J. Agron. Crop Sc, in press

Long term rotation experiment

Whitbread et al. 2015 Crop & Pasture Sc. 66, 553-565.

Calcarosol, PAWC = 70 mm Treatments comparing district practice (pasture-wheat) Vs opportunity and intensive cropping 11 seasons 1998-2008

Effect of variations in PAW and seeding opportunity on percentage of modelled yields- 'Triggers'

Whitbread et al. 2015 J. Agronomy and Crop Sc. Submitted.

Upper tercile (white) Middle tercile (grey) Lower tercile (black)

Smallholder farm livelihood systems are diverse

Systems have:

- Structural complexity of components
- Availability of a variety of natural resources
- Land types, water resources, Common Property Resources (CPR)
- Climate, Biodiversity
- Human, social & financial capital
- Interactions with markets
- Other drivers of change

Major climatic stresses and opportunities

Climate related stresses

- Delayed onset and early withdrawal of monsoon
- Unseasonal/erratic rains
- Long dry-spells
- Extreme rainfall events
- Related biotic stresses
- Land degradation

Opportunities

- Large kharif fallows (esp. Bijapur)
- Seasonal and short term rainfall forecasts/ crop modelling options
- Farm mechanization
- In-situ and ex-situ rainwater harvesting & utilization
- Conservation agriculture
- Favourable policy environment
- ICT tools for climate information

ENSO phase dependent Rainfall variability influenced crop yields in Ananthapuram, AP

Smith and Reynolds (2003) Extended Reconstructed SSTs of (1971-2002) 3.4 region (El Nino 16, La Nina 15, Neutral 22)

Medium duration Pigeonpea yield in Anantapur as effected by ENSO phase 0.5

Seasonal rainfall forecast and cropping options for Ananthapuram during 2015

- July and August rainfall was expected to be deficit as it is an El Nino/positive IOD year.
- September and October rainfall forecast is near or more than normal.
- Farmers were cautioned to sow crops only if the soil profile is fully filled in the month of June.
- Since the total rainfall for the season is expected to be deficit, green gram/pigeonpea, foxtail millet/pigeonpea intercrops for crop intensification, and diversification in stead of peanut monoculture were suggested.
- Low input management was suggested.

Farmers' adopted cropping interventions in Ananthapuram during rainy season 2015 based on rainfall forecast based cropping decisions.

Farmers in Turkapalli, Ananthapuram decided to sown Foxtail millet and peanut in their fields

Innovation platform for participatory learning

- Participatory planning for interventions
- Framework for local adaptation plan for action
- Facilitate upscaling

ICRISAT Science with a human face

Members: NARS: SAUs, ICAR institutes State line departments NGOs Industry, input suppliers Farmers Partner CG Centers

Conclusions

Strategic

- Historical and future climate analyses
- Design of the farm system for resilience (extreme events/ food security) and market opportunities (commercialisation)
- Infrastructure to enhance resilience.

Tactical (pre- and in-season responsive management)

- Climate forecasting (long, medium and short term)
- pre-season enterprise planning
- in-season responses to prevailing weather

Thank you to our sponsors:

<u>Australia</u> GRDC ACIAR

India/SSA -CGIAR CRP Programs CCAFS Dryland Systems Water Land & Ecosystems

Thank you!

University of Idaho

United States Department of Agriculture National Institute of Food and Agriculture

Pacific Northwest Farmers Cooperative

Monsanto

