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Presenta-on Overview




Geography

•  Large area, encompassing ≈150 Mha, 

10 states, and mul-ple ecoregions


Climate

•  200-750 mm MAP (WèE)

•  4-20°C MAT (NèS)

•  1100-1750 PET (NèS)


Na-ve Vegeta-on, Soil

•  Mixed-, short-grass

•  SOC accumula-on; Calcifica-on


Land use

•  90% agriculture

•  ≈45 Mha cropland (≈75% dryland)


U.S. Great Plains: Descrip-on


Bailey, 1995


-100°


40°




Conversion of na-ve vegeta-on 
to dryland cropping

  17 sites (MT to TX), surface 30.5 cm


  Mean SOC loss:


•  42±11%


•  7.7±5.2 g C kg-1


  SOC loss by sub-region:


•  39-43%


•  6.5-10.5 g C kg-1


U.S. Great Plains: Conversion and Soil C


Haas et al. (1957) 
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North Central South
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• Conven-onal -llage


•  Frequent use of fallow






• Reduced- and No--llage


•  Flex/Annual crop rota-ons


Cropping System Evolu-on in Great 
Plains


- - Weed and Residue Management Technology - -
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0.13 ± 0.04 Mg C ha-1 yr-1 

Reversing SOC Decline on Cropland? 
Dryland Cropping Systems




Loca-on

SOC 

accrual
 CH4 uptake


N fer-lizer 
produc-on/ 
applica-on


Farm 
opera-ons


Calculated N2O 
emission to achieve 

neutral GWP
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Achieving Neutral GWP 
No--llage, Con-nuous Cropping


Adapted from Liebig et al. (2009)




N2O flux 
No--llage, Con-nuous Cropping
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U.S. Great Plains (looking forward)


“Always in mo-on is the 
future.”


Yoda


hmp://starwars.wikia.com/wiki/Yoda




Shafer et al. (2014); P. 445


2041-2070
NOAA NCDC / CICS-NC


•  Seasonal change

   Winter/spring precipita-on 

projected to increase in the 
north


   Days with heavy precipita-on 
to increase in north


• Dry spells

Minimal change in north


Longer in south


Precipita-on Projec-ons




Temperature Projec-ons


• Days >38°C (100°F)

   2x in the north


   4x in the south


Shafer et al. (2014); P. 444


• Nights >16°C (60°F)

   2x in the north


   24 d increase in growing 
season


• Nights >27°C (80°F)

   4x in the south


2041-2070
NOAA NCDC / CICS-NC




…denitrifica-on in Northern Plains


…SOC Loss in Central and 
Southern Plains




Projec-ons suggest poten-al for 
greater…


Bailey, 1995


•  Improve NUE through breeding and 
management


•  Cropping interven-ons

•  Nitrifica-on/Urease inhibitors

•  Reduce propor-on of high N-demanding 

crops


•  Increase root/residue input through 
breeding and management


•  Increasing permanent cover
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M. Schmer, USDA-ARS




Parton et al. (2015)


•  Large root biomass; Substan-al 
SOC accrual 


•  Low- to moderate N2O emission 
(though broad valida-on in 
region is lacking)


•  Net nega-ve GHG flux (Parton et al., 
2015)


•  Significant co-benefits:

Ø Wildlife habitat

Ø Water regula-on/filtra-on

Ø Erosion protec-on

Ø Dynamic use (forage)


(Re)Incorpora-on of Perennial Phases

Biofeedstock Produc-on
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Renewed look at herbaceous grass 
op-ons for the Great Plains


•  Feedstock candidates for sub-regional 
adapta-on (e.g., Intermediate 
wheatgrass).


•  Management strategies for transi-oning 
between perennial/annual phases


•  More intensive quan-fica-on of 
performance/amributes


GHG Mi-ga-on: Research Gaps/Needs


From Post et al. (2012)




USDA-ARS Network Ac-vi-es 
Greenhouse Gas Reduc-on through Agricultural 
Carbon Enhancement Network (GRACEnet)

Greenhouse Gas Reduc5on through Agricultural Carbon 
Enhancement

•  Goal: Iden-fy and develop agricultural strategies to 

enhance soil carbon storage, reduce greenhouse gas 
emission, and improve environmental quality


•  33 experimental sites, 27 states

•  Common methods, treatment                                           

design, data management


•  ARS Data Portal

•  2002-present




USDA-ARS Network Ac-vi-es 
Resilient Economic Agricultural Prac-ces (REAP)

Vibrant Economies Depend on Healthy Landscapes Built on 
Healthy Soils 

•  Goal: Increase stakeholder awareness of soil health through 

research

•  36 experimental sites, 7 states

•  Cross-loca-on research


•  Stewardship of soil resources

•  Managing nutrients 


•  ARS Data Portal

•  2006-present




USDA-ARS Network Ac-vi-es 
Long-term Agroecosystem Network (LTAR)

Long-term, Trans-disciplinary Science for Agriculture

•  Goal: Ensure sustained produc-on and ecosystem services 

from agro-ecosystems, and forecast and verify effects of 
environmental trends, public policies, and emerging 
technologies


•  18 experimental sites, 9 regions

•  ‘Common Experiment’


•  Agro-ecosystem produc-vity

•  Climate variability and change

•  Conserva-on & environmental quality

•  Socio-economic viability & opportuni-es


•  2012-present

www.ars.usda.gov/ltar




Thanks for listening, and thank you to our 
sponsors: 
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Thank	you!	


