EARTHWORMS AND THE WEED SEED BANK

Why are Earthworms Important?

- Shaping Soil Dynamics
 - Casts
 - Burrows
 - Soil Nutrient Content
- Shaping Plant Community Dynamics
 - Root Growth (Arnone & Zaller 2014, Scheu 2003)
 - Seed Bank?

Ultimately, we need more information . . .

Why are Earthworms Important?

Do earthworms have an effect on the seed bank of weeds commonly found in Palouse wheat fields?

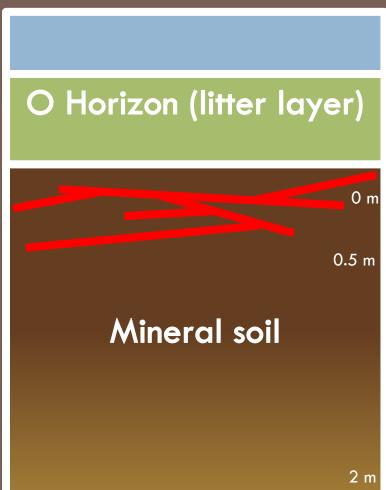
What is a Seed Bank?

- □ Viable, non-germinated seeds stored in the soil (Thompson and Grime 1979)
- "... Allows them to bridge temporally unsuitable habitat conditions" (Forey et.al. 2011)

What mechanisms facilitate the development of this seed bank?

Earthworm/Seed Interactions

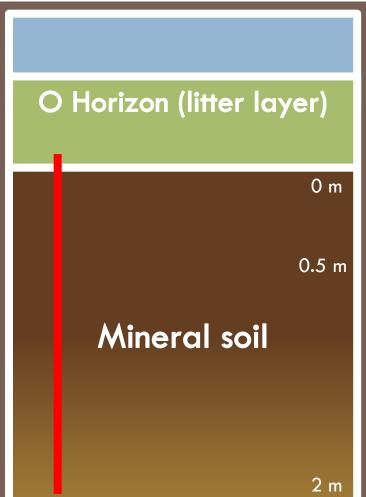
- Seeds are thought to be an essential part of earthworm nutrition (Eisenhauer et.al 2010, Forey et.al 2011)
- Predation by earthworms could have many effects on seeds including:
 - Increased Germination (Eisenhauer et.al 2009)
 - Decreased Germination (Eisenhauer et.al 2009)
 - Seed relocation (Forey et.al 2011, Regnier et.al 2008, Zaller et.al 2007)
- The effects are specific to each worm species x weed species


Species

Aporrectodea trapezoides:

Endogeic

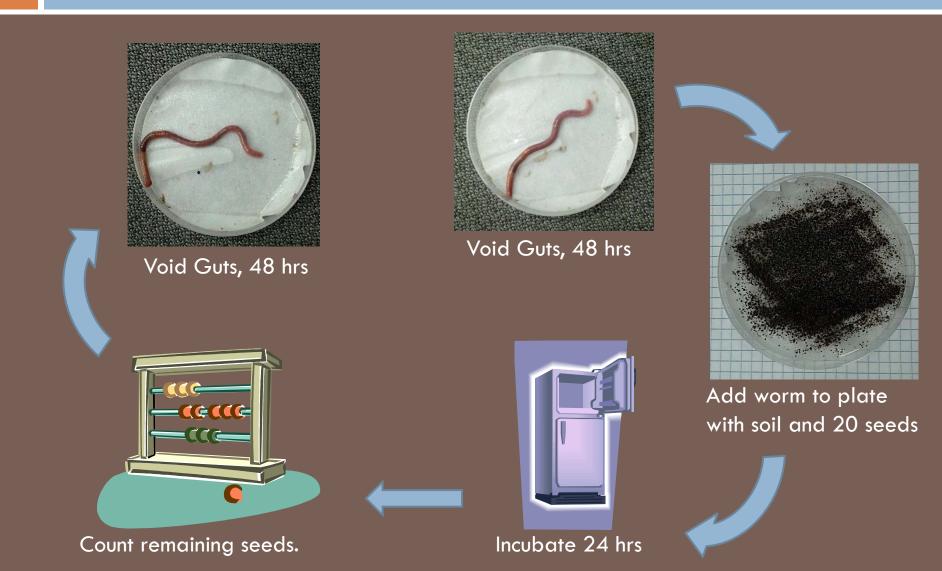
Usually less then 7.6-10.2 cm long


Species 2

Lumbricus terrestris:

Anecic

Up to 30 cm long



My research

- Part I: What will A. trapezoides and L. terrestris eat? Does ingestion of seeds affect rates of germination?
- Part II: Do the earthworms move these seeds throughout the seed bank.

Part I: Methods

Part I: Methods

Part I: Results

A. trapezoides

		% seeds	,
Species	recovered	egested	missing
Prickly			
Lettuce	87.6	7.1	5.7
	00.0		
Bindweed	98.6	0	1.4
Ventenata	100	0	0
Rattail			
Fescue	98.6	0	1.4

L. terrestris

Species	% of seeds recovered	% seeds egested	
Prickly Lettuce	12.6		
Bindweed	73.6	15	11.4
Ventenata	100	0	0
Rattail Fescue	91.4	4.3	4.3

A. trapezoides prefers smaller seeds while L. terrestris will eat both small and larger rounded seeds.

Part I: Results

A. Trapezoides

Prickly Lettuce Trial

Plate #	% of seeds eaten	% of eaten seeds germinated
1	55	0
2	35	0
3	45	33
4	55	36
5	30	0
6	10	0
7	75	47
Control	N/A	45.0
Total	43.6	23.0

4.3% of seeds from experiment were determined to be "missing"

Other controls germinated at 60%

Weed Species

- Redroot Pigweed (Amaranthus retroflexus)
- Prickly Lettuce (Lactuca serriola)
- Field Bindweed (Convolvulus arvensis)

Part II: Methods

- □ Into each mesocosm:
 - Autoclaved Soil, inoculated with 1 gram sieved soil, water added through a wicking system
 - 3 L. terrestris
 - **OR** 3 A. trapezoides
 - 100 weed seeds of one species

Soil can then be removed in layers and washed to determine how many seeds were at each depth

Part II: Methods

□ 5 treatments

- A. trapezoides x Prickly Lettuce
- A. trapezoides x Redroot Pigweed
- L. terrestris x Prickly Lettuce
- L. terrestris x Redroot Pigweed
- L. terrestris x Field Bindweed

 $13.5 \text{ cm} \times 13.5 \text{ cm} \times 18 \text{ cm}$

Part II: Results

L. terrestris x Bindweed at T=0

L. terrestris x Bindweed (#27) at T=1 day

Part II: Results

Prickly Lettuce

	% remaining on soil surface
1	64
2	78
3	92
4	87
5	60

Part II: Results

Redroot Pigweed

Mesocosm	% remaining on soil surface
1	75
2	65
3	
4	84
5	51

Summary

- Seed preference
 - A. trapezoides prefers smaller seeds
 - L. terrestris consumes small and larger seeds
 - Neither eat grass seeds
- Prickly Lettuce
 - Appears to be commonly preyed upon by earthworms
 - Reduced Germination? Possibly destroyed by gut grinding
- The Effects of Seed Predation on the Seed Bank
 - L. terrestris appears to carry bindweed seeds deeper into the soil
 - Surface casts and missing seeds indicate A. trapezoides may also bury seeds in the seed bank

Questions?