

REACCH Regional Approaches to Climate Change – PACIFIC NORTHWEST AGRICULTURE

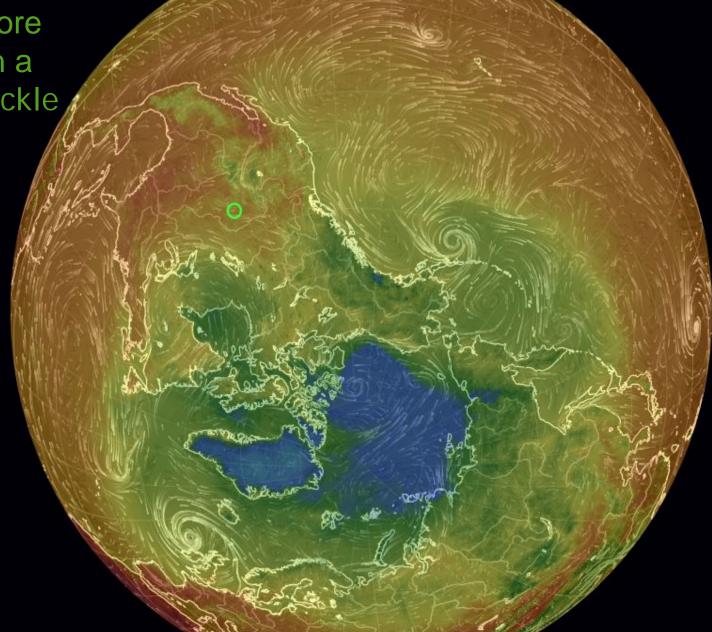
Predicting Grower Behavior and Environmental Outcomes under Alternative Policy Scenarios for Encouraging Mitigation Practices

REACCH INTERN: MAYOWA BALOGUN

MENTORS: Kathleen Painter, Nicole Ward, Claudio Stockle, David Huggins, Bill Pan, Brian Lamb

Pacific Northwest dryland farming region

Leader in soft white wheat production


OREGON

- Soil erosion is a major issue (Kok et al. 2009)
- Agriculture = 7.4% of total (GHG) emissions in the United States
 - 70% due to N₂O from agricultural soils (e.g., nitrogen [N] fertilizer) (U.S. E.P.A. 2011)

Green House Gas Emission (CO2, N2O, CH4)

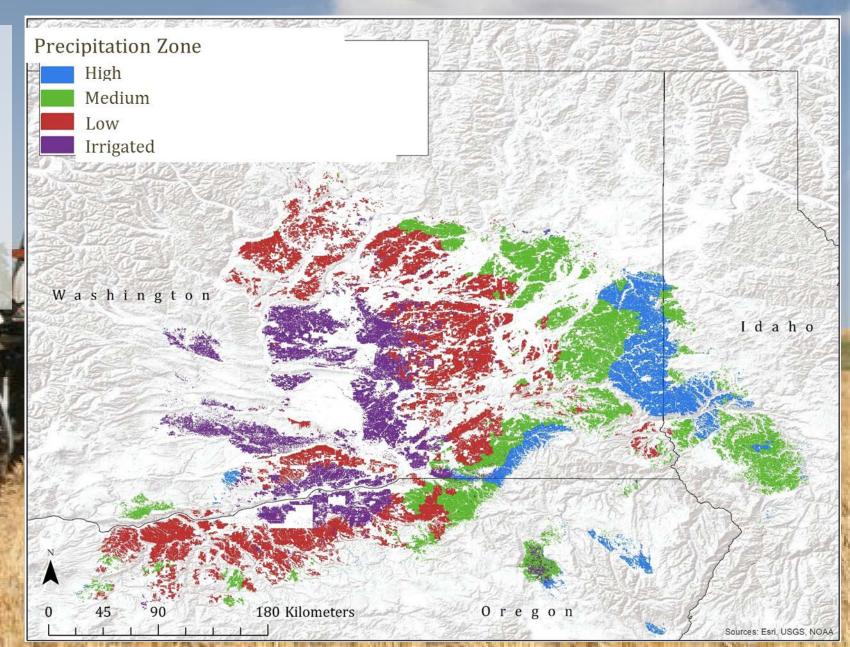
 $N_2O - 300$ times more potent than CO_2 on a mass basis (C. Stockle et al. 2012)

45.02° N, 104.40° W × 105° @ 19 km/h 22.5 ℃

Erosion on the Palouse Hills

Very fine sand, silt, clay and organic matter are easily removed

Research Questions

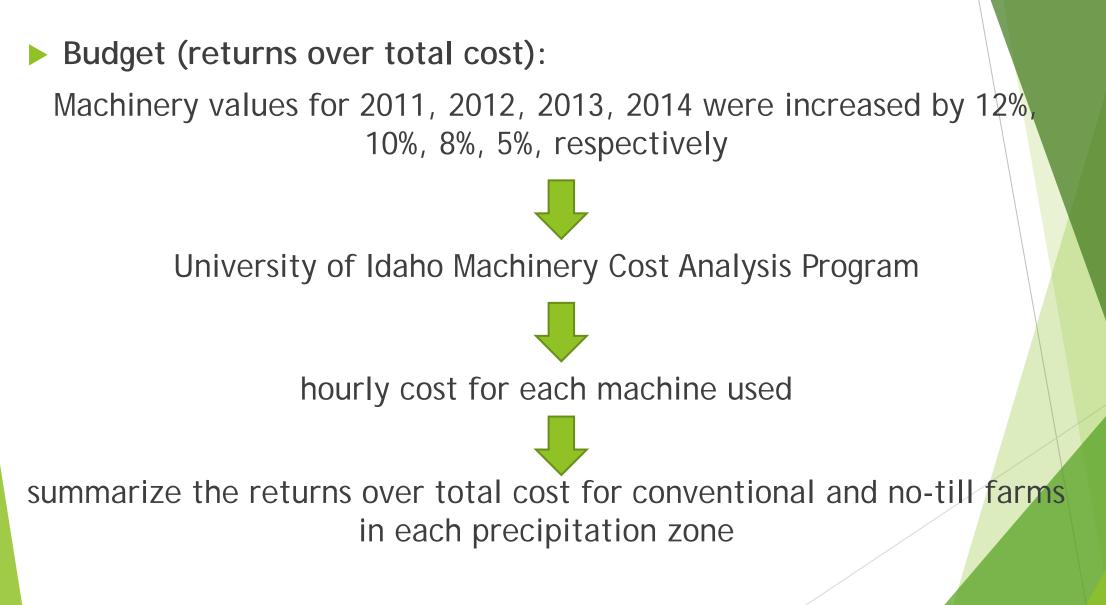

- ▶ What are the effects of tillage on N₂O emissions?
- How do precipitation zones impact crop yields and economics?
- Why do farmers choose one type of tillage over another?

REACCH PRECIPITATION ZONES

Low Rainfall Zone – Lind

Medium Rainfall - St. John

High Rainfall - Pullman



Methods

Emission & Erosion values are from C. Stockle et al. 2012

- Cropsyst model
- Simulated wind and water erosion
- ► Simulated N₂O emissions, expressed as CO₂ equivalent
- Budget (returns over total cost):
 - Input prices from 2011-2014 were averaged to estimate price levels
 - Input prices include fuel, seed, fertilizer, adjuvants etc.

Methods cont..

🚜 High Rainfall CT 2014.uimc - University of Idaho Machinery Cost Analysis Program

- 0

×

File Edit Help

Diesel Cost (\$/gallon) 3.48	INSTRUCTIONS: Enter general parameters to the left.
Gasoline Cost (\$/gallon) 3.56	
Interest Rate (%) 6.31	Double-click on an item in the list to view or edit that item. Right-click on an item for more options.

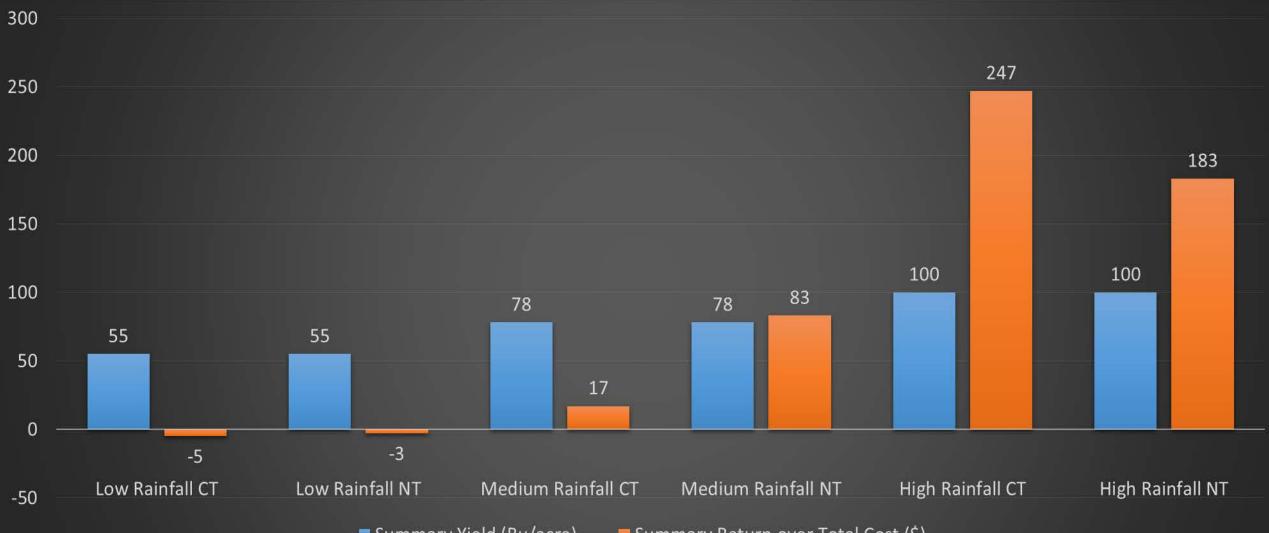
Machinery and Equipment Costs Per Acre

Operation	Depreciation	Interest	THI	Repairs	Labor	Fuel/Lube	Total \$/Acre	^
nothing (wagon) and 50HP-WT DIV by	1.85	1.90	0.36	0.66	5.44	3.60	13.82	
2T truck (truck)	0.25	0.15	0.06	0.22	0.24	0.14	1.05	
4WD ATV divide by 10 (ATV)	1.65	0.70	0.14	0.29	8.80	1.97	13.54	
4WD 3/4 ton pickup (pickup)	0.42	0.20	0.21	0.33	1.92	0.82	3.90	
tandem axle (truck)	0.42	0.26	0.42	0.44	0.48	0.26	2.30	
30' grain combine (self-propelled combi	7.17	2.94	1.21	1.44	1.89	2.52	17.17	
32' wide split packer (grain drill) and 20	0.36	0.26	0.10	1.15	1.30	2.30	5.47	
25' Disc (heavy-duty disk) and 200HP	1.16	0.63	0.09	0.45	1.90	2.76	7.00	
36' cultivator + harrow (field cultivator)	1.18	0.64	0.10	0.63	0.85	1.39	4.79	
40' rodweeder (field cultivator) and 200	1.09	0.57	0.10	0.64	0.83	1.22	4.45	
trap wagon (pickup)	0.25	0.12	0.07	0.09	0.08	0.03	0.64	
36' Direct Seed Drill (grain drill) and 350	1.61	0.94	0.32	1.48	1.57	3.14	9.07	
200HP D5 (crawler tractor)							3636	
200HP-WT (4 wheel drive tractor)							**	
36' cultivator (field cultivator) and 200H	0.45	0.30	0.03	0.40	0.85	1.35	3.36	
32' split packer drill (grain drill) and 200	0.38	0.28	0.11	1.21	1.62	2.36	5.96	
32' undercutter sweep (field cultivator)	0.39	0.27	0.03	0.42	0.88	1.52	3.51	
23' chisel (chisel plow) and 200HP D5 (2.29	1.37	0.13	1.67	1.64	2.62	9.73	
25' grain combine (self-propelled combi	4.37	1.89	0.78	3.74	2.51	3.36	16.64	
36' JD455 grain drill (grain drill) and 20	0.85	0.39	0.16	2.11	1.62	2.36	7.51	
40' rodweeder (field cultivator) and 200	0.17	0.11	0.02	0.21	0.76	1.11	2.38	
90' sprayer (boom-type sprayer) and 20	0.21	0.11	0.01	0.21	0.48	0.69	1.71	
50' shank fertilizer ap (field cultivator) a	0.05	0.04	0.01	0.10	0.76	1.21	2.16	
30' shank fertilizer ap (field cultivator) a	0.09	0.06	0.01	0.16	1.26	2.01	3.59	~
Devide a field and an Area in the field to down as a	Poll of Prill P	1						

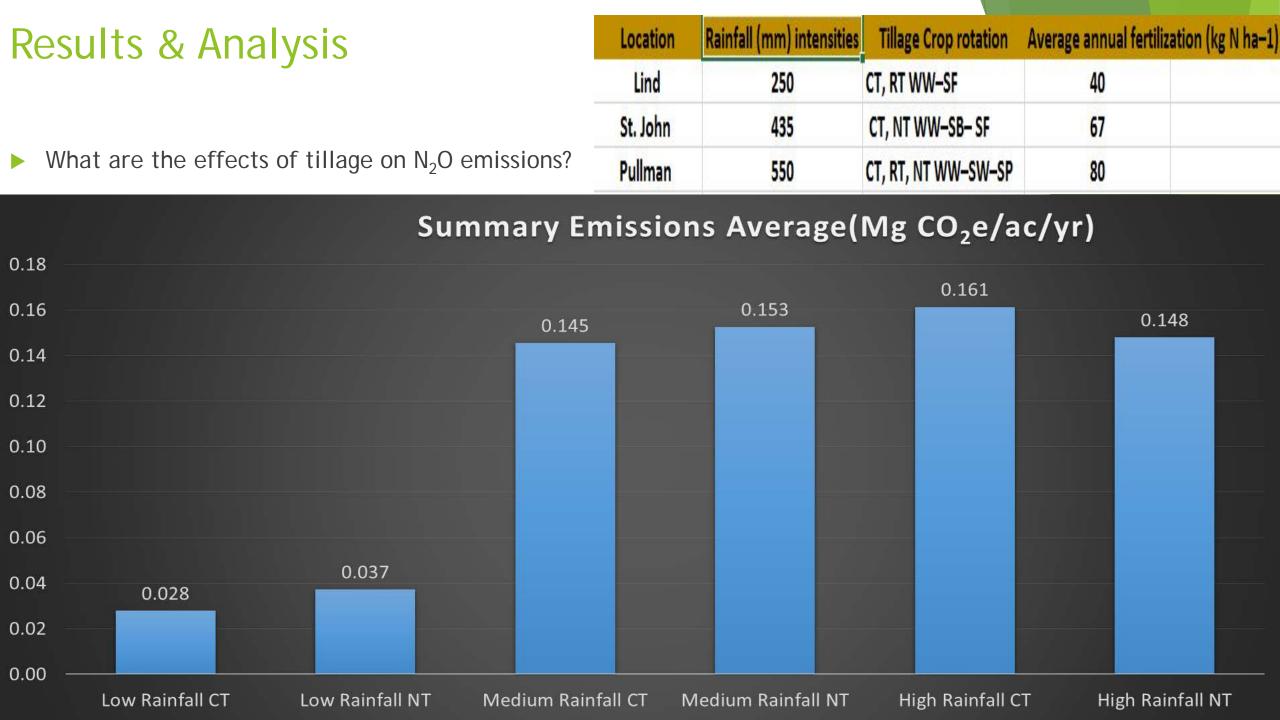
Double-click on an item in the list to view or edit that item. Right-click on an item for more options.

** \$/acre figures are not available, and not included in Totals. For \$/acre figures, select an implement for a Tractor or ATV, add Miles Per Acre for Trucks, or add Acres Per Hour for ATVs or Wagons

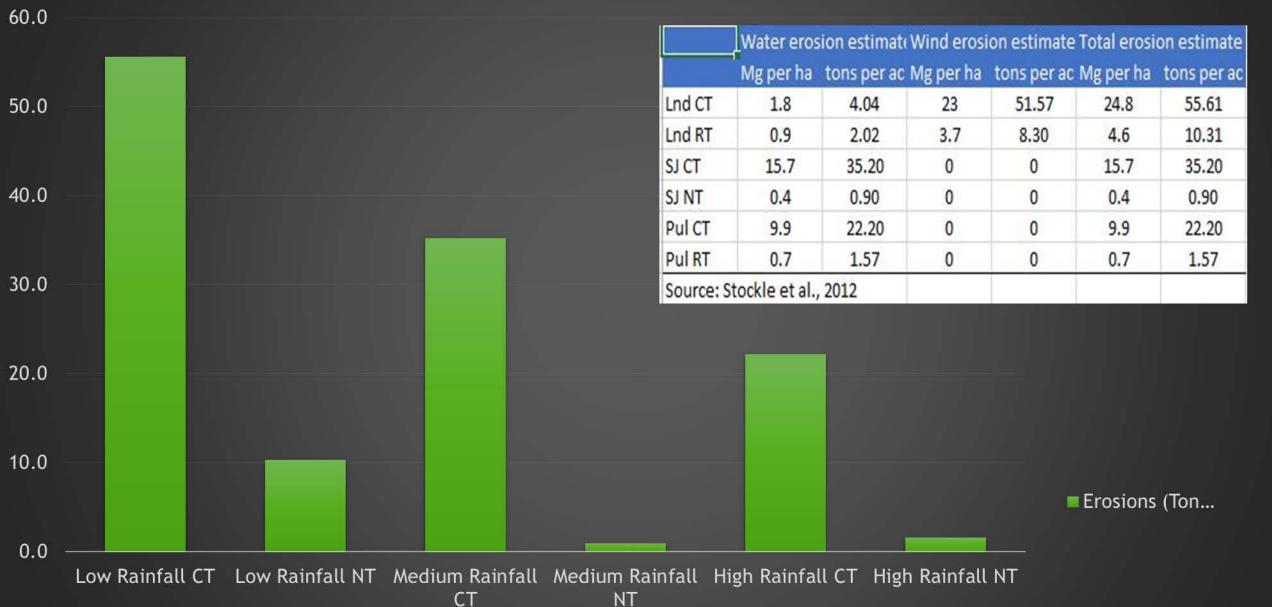
Methods cont..


Returns over total cost (Conventional Tillage & No-till)

Erosion & Emissions (Conventional Tillage & No-till)


Results & Analysis

► How do precipitation zones impact crop yields and economics?



Summary Yield (Bu/acre)

Summary Return over Total Cost (\$)

Erosions (Ton ha-1 y-1)

NT

Results & Analysis

- Why do farmers choose one type of tillage over another?
 Based on longitudinal survey from 2011-2013 (48 farmers)
- NT difficult to learn and operate
- Unsure of long term profitability
- Initial investment for NT is high

Conclusion

- Crop yields do not vary by tillage assumptions for each AEC, but returns over TC does vary due to different machinery operations and input usage
 - ► For example, herbicides replace tillage for weed control in NT.
- Soil erosion rates under CT in the study region are high, negatively impacting soil quality, yields, and water quality.
- Simulated N₂O emissions, expressed as CO₂ equivalent, were not very different under CT and NT.
- However, N₂O emissions were sufficiently high to offset gains in SOC from the conversion of CT to RT or NT.

Conclusion Cont...

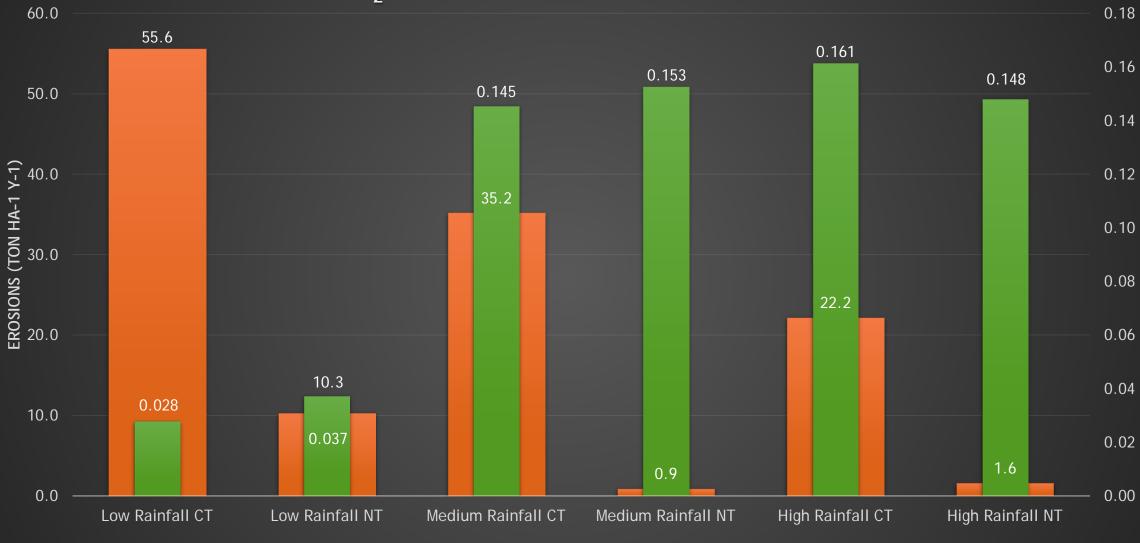
- Thus, reducing tillage intensity can result in net C storage, tillage practices will help reduce GHG on each AEC but it will be hard to achieve without full consideration of Nitrogen Fertilizer management.
- It will be easier to persuade farmers in Medium CT to move to Medium NT because of the profit because farmers want assurance on return
- This program should be expanded to offer additional incentives, particularly in areas that show reduced profitability or no gain under reduced tillage. (For erosion not N₂O)

Extension

- How do precipitation zones impact crop yields and economics?
- Importance: soil quality, yields, water quality, reduce N₂O emission
- If the information for this research were consider valid enough, pamphlet could be created and information in it should encourage careful nitrogen management based on the annual application
- Stakeholders: Farmers

Reference

- Kok, H., R.I. Papendick, and K.E. Saxton. "STEEP: Impact of Long-term Conservation Farming Research and Education in Pacific Northwest Wheatlands." *Journal of Soil and Water Conservation* 64.4 (2009): 253-64. Print.
- Stockle, C., S. Higgins, A. Kemanian, R. Nelson, D. Huggins, J. Marcos, and H. Collins. "Carbon Storage and Nitrous Oxide Emissions of Cropping Systems in Eastern Washington." A Simulation Study 67 (2012)


ACKNOWLEDGMENT

Special thank you

- Kathleen Painter
- Nicole Ward
- Johnson-Maynard, Jodi
- Haverhals, Marijka

N₂O EMISSIONS VS EROSION

EMISSIONS AVERAGE (MG CO2E/AC/YR)

Summary Summary