Evaluation of 4R's N management for Canola

Best Management Practices for Mitigating and Adapting to Climate Change (cfBMPs)

Nitrogen Management Crop Diversification and Intensification

"Canola is not you'r father's wheat"

Canola: Tap Rooted Crop

Wheat: Fibrous Rooted Crop

Starter Fertilizer

Previous Research

Root Urea Interactions

Wheat

Pan, William L., Isaac J. Madsen, Ronald P. Bolton, Lisa Graves, and Tara Sistrunk. "Ammonia/Ammonium Toxicity Root Symptoms Induced by Inorganic and Organic Fertilizers and Placement." *Agronomy Journal*, 0, no. 0 (2016): 2485-2492.

My Research Objective

Urea

Ammonium Sulfate Urea Ammonium Nitrate

Ammonium Polyphosphate 11-37-0

10

Sec.

N Source Gradients

Effective Dose Response

49.8

- Percentile = % Root Depth Reduction
- ED = Effective Does Rate to reach (X)% root depth reduction

Source	Percentile		ED (mg N cm-1)	StdError
Urea		50	5.3	0.8
AS		50	8.4	2.7
UAN		50	18.6	2.7
polyphos (11-37-0)		50	0.1	7.0
Source	Percentile		ED (mg N cm-1)	StdError
Urea		90	9.8	4.6
AS		90	22.0	16.3
UAN	5	90	28.1	9.4
polyphos (11-37-0)		90	#################	#######################################
the second se			EAST A AND	

- Was there a difference in ammonium/ammonia toxicity threshold for the various sources
- Which source exhibited the highest toxicity levels
- Which source Exhibited the lowest toxicity levels
- What caused the differences in toxicity levels
- Future Research

- Was there a difference in ammonium/ammonia toxicity threshold for the various sources
- Which source exhibited the highest toxicity levels
- Which source Exhibited the lowest toxicity levels
- What caused the differences in toxicity levels
- Future Research

Effective Dose Response

444 C

- Percentile = % Root Depth Reduction
- ED = Effective Does Rate to reach (X)% root depth reduction

Source	Percentile	ED (mg N cm-1)	StdError
Urea	50	5.3	0.8
AS	50	8.4	2.7
UAN	50	18.6	2.7
polyphos (11-37-0)	50	0.1	7.0
Source	Percentile	ED (mg N cm-1)	StdError
Urea	90	9.8	4.6
AS	90	22.0	16.3
UAN	90	28.1	9.4
polyphos (11-37-0)	90	#################	#######################################
the second	All and a state	the second	

- Was there a difference in ammonium/ammonia toxicity threshold for the various sources
- Which source exhibited the highest toxicity levels
- Which source Exhibited the lowest toxicity levels
- What caused the differences in toxicity levels
- Future Research

Effective Dose Response

444 C

- Percentile = % Root Depth Reduction
- ED = Effective Does Rate to reach (X)% root depth reduction

Source	Percentile	ED (mg N cm-1)	StdError
Urea	50	5.3	0.8
AS	50	8.4	2.7
UAN	50	18.6	2.7
polyphos (11-37-0)	50	0.1	7.0
Source	Percentile	ED (mg N cm-1)	StdError
Urea	90	9.8	4.6
AS	90	22.0	16.3
UAN	90	28.1	9.4
polyphos (11-37-0)	90	#######################################	#######################################

- Was there a difference in ammonium/ammonia toxicity threshold for the various sources
- Which source exhibited the highest toxicity levels
- Which source Exhibited the lowest toxicity levels
- What caused the differences in toxicity levels
- Future Research

Chemical Composition

$\frac{\text{Urea}}{\text{CO(NH}_2)_2}$

46-00-00

<u>Urea Ammonium</u> <u>Nitrate</u> AN(NH₄NO₃)

32-00-00

 $\frac{\text{Ammonium}}{\text{Sulfate}}_{(NH_4)_2SO_4}$

21-00-00

Ammonium Polyphosphate (NH₄PO₃)_n 11-37-0

- Was there a difference in ammonium/ammonia toxicity threshold for the various sources
- Which source exhibited the highest toxicity levels
- Which source Exhibited the lowest toxicity levels
- What caused the differences in toxicity levels
- Future Research

"Canola is not you'r father's wheat"

Relative Toxicity

Urea

Ammonium Sulfate

Urea Ammonium Nitrate Ammonium Polyphosphate 11-37-0

Right Source

Right Rate

Urea Ammonium Nitrate

(10-15mg N cm-1)

