GENETIC DIVERSITY OF DOWNY BROME IN WHEAT PRODUCTION SYSTEMS

Jonathan Witkop, Amber Hauvermale, Nevin Lawrence, Ian Burke

What is downy brome?	
Background	
Literature	
The Issue	
Project Importance	
Hypothesis	
Methods	
Results	
Discussion	

What is downy brome?

Downy brome is an annual bunchgrass in the Poaceae family that flowers in springsummer.

Seeds are dispersed by wind or animals. AND human shoes and pens.....

Background

Ist invasion: Pennsylvania in 1790 via grain and hay from Eurasia

Reported in Washington 1893

Invades all over US

Yield losses reach 90%!

Why is downy brome a problem?

Downy brome is a highly invasive weed that invades wheat fields and decrease yields

Growers are having difficulty removing it

It is important to be able to maintain a productive wheat system that will support local growers, the community, and an increasing population with diminishing resources.

Literature

Novak et al. studied 60 populations, -average heterozygosity =0.012 -Very little outcrossing

Merrill et al. looked at 1920 individuals across 96 locations around US

-14 biotypes=79% total individuals

Project Importance

Studies of downy brome have been conducted in natural, rangeland settings

This study focuses on the adaptation of downy brome in wheat production systems, which has never been studied before.

Goals and Objectives

*Study the diversity of downy brome in wheat field production systems

*Characterize phenotypes associated with downy brome: seed dormancy, after-ripening, germination.

Methods

Phase I: Collecting in-field samples

Phase 2: Seed germination

Phase 3: DNA extraction

Phase 4: Primer Design and PCR

Phase 5: Gel electrophoresis

Phase I: Field Sampling

Visited 8 different sites (McGregor wheat fields)

-6 in WA, 2 in ID

PI P2 P3 P4 P5

Dusty, WA

860 Meters 0 215430 W Gillis Rd S Pence Rd 80 0 0 0 0 Service Layer Credits: Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri

460 Meters

Lewiston, ID

Lind, WA

460 Meters

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,

Moscow, ID

Pomeroy, WA

0.5 2 0 1 Miles

0 0.1 0.2 0.4 Miles

Legend

- GPS outliers
- Brome samples

Service Layer Credits: Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri Service Layer Credits: Sources: Esri, HERE, DeLorme, USGS, Intermap, Increment P Corp., NRCAN, Esri Japan, METI, Esri China

Sprague, WA

WR 23

Miles

Waitsberg, WA

Walla Walla, WA

Samples collected via "pseudo" random sampling

32 plants collected from each field

lab

Plants were collected in bags and hand threshed in

Phase 2: Germination

Preliminary germination

Prelim Trial I:

-4 treatments: GA+GC, -GA+GC, GA+Vern,
-GA+vern (25mL, 10mM GA3)
-caryopses germinated in plating bags
-vern treatment= 4 days GC
-miracle grow
-28 seeds/treatment

Prelim. positive trial results:

+GA -V= 39%

+GA +V= 7%

-GA+GC=0

-GA+V=0

Preliminary trial 2:

-oven treatment at 30°C I-7 days

-added 20 μM GA3 and put in GC after

oven

FINAL GERMINATION

Treatment : I0µM GA3 + GC

4 sites: Dusty,WA Lind,WA Sprague,WA Pomeroy,WA

32 plants/site, 20 seeds/plant= 640 seeds/site

Final Germination

Dusty, WA=8% Sprague, WA=3% Lind, WA= 9% Pomeroy, WA= 22.5%

Phase 3: DNA extraction

2 methods for extraction:

I) CTAB method

-liquid N

- -buffer, isochloroform, isopropanol, ethanol
- separating carbohydrates, proteins, and nucleic acids

2) High through-put-Biosprint 96 robot

-plating compounds into wells to be loaded into BioSprint robot -5 blocks: tween, ethanol, lysate, h20, buffer, isopropanol, magnetic beads

PI P2 **P3** P4 P5

RON

.

0

.....

.

s shake the entire rack in Ensure that the Varies the eark of Note: For elution of DHA, use distilled water that does not centain Torong 20. A charge the measures profession of the form back 2. Transfer 20.001 I cleared plant lyster into each well do an S-Black. 3. Add 200 µl isogregened to each sample in the S-Black.

.....

1

-

.

Phase 4: Primer Design and PCR

Primer: short strand of nucleic acid sequences used as a starting point for DNA synthesis

PCR-polymerase chain reaction, used to amplify a DNA sequence by creating many copies of a sequence

Background for Primer Design

Nevin Lawrence collected 96 plants from different GPS locations

Distinguished 6 unique populations from all samples

8 most informative 100bp sequences were found, each associated with a SNP

SNP (single nucleotide polymorphism)- represents a difference in a single nucleotide

e.g. ATTCG ATACG

Primers were designed from the 8 sequences

13962_Population 5

Forward Primer

ATCTGTAGAATCACGGAGGAC ...ATCTGTAGAATCACGGAGGTCTCCTGTCGCAGAGTTG ...TAGACATCTTAGTGCCTCCAGAGGACAGCGTCTCAAC CAACTCTGCGACAGGA

Reverse Primer

PI P2 P3 **P4** P5

GEL ELECTROPHORESIS

A method for amplifying and separating DNA fragments of different lengths from one another to determine the size of the DNA

RESULTS

One of the "wild-type" primers was specific to an individual in Pomeroy and Moscow but not for the other individuals including other individuals from Moscow and Pomeroy.

Sampled Site	Primer specificity		
Pomeroy #9	+		
Pomeroy #29	-		
Sprague #13	-		
Sprague #23	-		
Waitsberg #10	-	SObp-	
Lind #8	-		
Lind #22	-	12345678910 11 12	
Moscow #I	-	LE LE MING PO ES	
	+	2AEXIAA 5000	
	11 X TAK JOC (1396		

DISCUSSION

Results indicate there may be multiple genetically diverse populations within a single field.

It important for wheat growers to know how much diversity is in-field in order to better manage downy brome

STAKEHOLDERS

Wheat growers, farmers

Chemical/herbicide Industry

Researchers

Consumers

General public

Sources

Novak S, Mack R, Soltis D (1991) Genetic variation in Bromus tectorum (Poaceae): population differentiation in its North American range. Am J Bot 78:1150–1161

Merrill KR, Meyer SE, Coleman CE (2012) Population genetic analysis of Bromus tectorum (Poaceae) indicates recent range expansion may be facilitated by specialist genotypes. Am J Bot 99:529–37

Wikipedia-general definitions

Thank you

WSU Weed Science Lab Amber Hauvermale Ian Burke Nevin Lawrence And of course

Kyle CB Nicholas Race

QUESTIONS?