GENETIC DIVERSITY OF DOWNY BROME IN WHEAT PRODUCTION SYSTEMS

Jonathan Witkop, Amber Hauvermale, Nevin Lawrence, Ian Burke
What is downy brome?

Background

Literature

The Issue

Project Importance

Hypothesis

Methods

Results

Discussion
What is downy brome?

Downy brome is an annual bunchgrass in the Poaceae family that flowers in spring-summer.

Seeds are dispersed by wind or animals. AND human shoes and pens.....
Background

1st invasion: Pennsylvania in 1790 via grain and hay from Eurasia

Reported in Washington 1893

Invades all over US

Yield losses reach 90%!
Why is downy brome a problem?

Downy brome is a highly invasive weed that invades wheat fields and decrease yields.

Growers are having difficulty removing it.

It is important to be able to maintain a productive wheat system that will support local growers, the community, and an increasing population with diminishing resources.
Literature

Novak et al. studied 60 populations,
- average heterozygosity = 0.012
- Very little outcrossing

Merrill et al. looked at 1920 individuals across 96 locations around US
- 14 biotypes = 79% total individuals
Project Importance

Studies of downy brome have been conducted in natural, rangeland settings.

This study focuses on the adaptation of downy brome in wheat production systems, which has never been studied before.
Goals and Objectives

*Study the diversity of downy brome in wheat field production systems

*Characterize phenotypes associated with downy brome: seed dormancy, after-ripening, germination.
Methods

Phase 1: Collecting in-field samples
Phase 2: Seed germination
Phase 3: DNA extraction
Phase 4: Primer Design and PCR
Phase 5: Gel electrophoresis
Phase 1: Field Sampling

Visited 8 different sites (McGregor wheat fields)

-6 in WA, 2 in ID
Moscow, ID
Pomeroy, WA
Sprague, WA
Waitsberg, WA
Walla Walla, WA
Samples collected via “pseudo” random sampling

32 plants collected from each field

Plants were collected in bags and hand threshed in lab
Phase 2: Germination

Preliminary germination

Prelim Trial 1:
-4 treatments: GA+GC, -GA+GC, GA+Vern, -GA+vern (25mL, 10mM GA3)
caryopses germinated in plating bags
vern treatment= 4 days → GC
miracle grow
28 seeds/treatment
Prelim. positive trial results:

+GA -V = 39%

+GA +V = 7%

-GA+GC = 0

-GA+V = 0
Preliminary trial 2:

- oven treatment at 30°C 1-7 days

- added 20 μM GA3 and put in GC after oven
Preliminary trial 2 results:

1 Day: 31%
2 Days: 19%
3 Days: 30%
4 Days: 36%
5 Days: 22%
6 Days: 21%
7 Days: 11%
FINAL GERMINATION

Treatment: 10μM GA3 + GC

4 sites:
Dusty, WA
Lind, WA
Sprague, WA
Pomeroy, WA

32 plants/site, 20 seeds/plant = 640 seeds/site
Final Germination

Dusty, WA = 8%
Sprague, WA = 3%
Lind, WA = 9%
Pomeroy, WA = 22.5%
Phase 3: DNA extraction

2 methods for extraction:

1) CTAB method
 - liquid N
 - buffer, isochloroform, isopropanol, ethanol
 - separating carbohydrates, proteins, and nucleic acids

2) High through-put-Biosprint 96 robot
 - plating compounds into wells to be loaded into BioSprint robot
 - 5 blocks: tween, ethanol, lysate, h20, buffer, isopropanol, magnetic beads
Phase 4: Primer Design and PCR

Primer: short strand of nucleic acid sequences used as a starting point for DNA synthesis

PCR-polymerase chain reaction, used to amplify a DNA sequence by creating many copies of a sequence
Background for Primer Design

Nevin Lawrence collected 96 plants from different GPS locations

Distinguished 6 unique populations from all samples

8 most informative 100bp sequences were found, each associated with a SNP

SNP (single nucleotide polymorphism)- represents a difference in a single nucleotide

e.g. ATTCG
 ATACG

Primers were designed from the 8 sequences
13962_Population 5

Forward Primer

ATCTGTAGAATCACGGAGGAC
…ATCTGTAGAATCACGGAGGTCTCCTGTGCACAGAGGTTG
…TAGACATCTTTAGTGCCTCCAGAGGACACAGCGTCTCTCAAC

Reverse Primer

CAACTCTGCGACAGGA
PCR
GEL ELECTROPHORESIS

A method for amplifying and separating DNA fragments of different lengths from one another to determine the size of the DNA.
RESULTS

One of the “wild-type” primers was specific to an individual in Pomeroy and Moscow but not for the other individuals including other individuals from Moscow and Pomeroy.

<table>
<thead>
<tr>
<th>Sampled Site</th>
<th>Primer specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomeroy #9</td>
<td>+</td>
</tr>
<tr>
<td>Pomeroy #29</td>
<td>-</td>
</tr>
<tr>
<td>Sprague #13</td>
<td>-</td>
</tr>
<tr>
<td>Sprague #23</td>
<td>-</td>
</tr>
<tr>
<td>Waitsberg #10</td>
<td>-</td>
</tr>
<tr>
<td>Lind #8</td>
<td>-</td>
</tr>
<tr>
<td>Lind #22</td>
<td>-</td>
</tr>
<tr>
<td>Moscow #1</td>
<td>-</td>
</tr>
<tr>
<td>Moscow #6</td>
<td>+</td>
</tr>
</tbody>
</table>
Results indicate there may be multiple genetically diverse populations within a single field.

It important for wheat growers to know how much diversity is in-field in order to better manage downy brome.
STAKEHOLDERS

Wheat growers, farmers

Chemical/herbicide Industry

Researchers

Consumers

General public

Wikipedia-general definitions
Thank you

WSU Weed Science Lab
Amber Hauvermale
Ian Burke
Nevin Lawrence
And of course

Kyle CB Nicholas Race
QUESTIONS?