Integrating Environmental Accounting into AgTools™

Jenna Way
Zach Millang
2014 REACCH Internship Project
Oregon State University

Funded through Award #2011-68002-30191 from USDA National Institute for Food and Agriculture
What is *AgTools*TM?

- Evaluates the **profitability** and **feasibility** of different management strategies and cropping systems, at the individual farm level.

- **Suite of Software Programs:**
 - *AgProfit*- Determines how changes in input costs, output costs, and yields affect profitability (20 years)
 - *AgLease*- Establishes equitable crop shares
 - *AgFinance*- Analyzes liquidity, solvency, and repayment capacity (10 years)
Internship Project

• **Literature Review**
 o Environmental effects of agricultural practices
 o Direct seed vs. conventional tillage wheat production (PNW)

• **AgTools™ Analysis**
 o Direct seed vs. conventional till winter wheat-summer fallow rotation, less than 12 inch precipitation zone
 o Annual cropping vs. winter-wheat and summer fallow with and without climate change
Literature Review

- **AgEnvironment Components and Tools**
 - GHG Emissions, soil erosion, water use, herbicides, pesticides, and fertilizers
 - GHG Emissions- Cool Farm Tool
 - Soil Erosion- USDA Rusle2 and WEPP
 - Pesticides- Cornell University EIQ Equation

Direct Seed vs. Conventional Till WW-SF Production

- No-till production requires about 4 additional herbicide applications (Esser).
- No-till early averages a higher yield (~70bu/acre) but late no-till produces 20% less (Esser).
- No Till allows for fewer trips across the field resulting in less fuel consumption (Perry).
Winter Wheat-Summer Fallow
Direct Seed vs. Conventional Till
Less than 12 inch Precipitation

<table>
<thead>
<tr>
<th></th>
<th>Direct Seed</th>
<th>Conservation Tillage</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Net Returns</td>
<td>$378.99</td>
<td>$259.24</td>
<td>$119.75</td>
</tr>
<tr>
<td>Net Present Value</td>
<td>$306.80</td>
<td>$218.06</td>
<td>$88.74</td>
</tr>
<tr>
<td>Sensitivity Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Net Returns</td>
<td>$245.11</td>
<td>$259.24</td>
<td>($14.13)</td>
</tr>
<tr>
<td>Net Present Value</td>
<td>$220.95</td>
<td>$218.06</td>
<td>$2.89</td>
</tr>
</tbody>
</table>
W. Wheat-Summer Fallow vs. Annual Cropping Before and After Climate Change

• **Before Climate Change**
 o **W. Wheat-Summer Fallow**
 - **12-18 inch** precipitation zone
 - Randomized *historical yields* (Sherman County)
 o **Annual Cropping: W. Wheat, Camelina, Canola, Peas**
 - Market sensitivity analysis- varying yields and net returns

• **After Climate Change**
 o **W. Wheat-Summer Fallow**
 - **18-24 inch** precipitation zone
 - *Projected yields* from Global Climate Models (Umatilla County)
 - Increase Fertilizer costs and sprays, insert insecticides and fungicide
 o **Annual Cropping: W. Wheat, Camelina, Canola, Peas**
 - Market Sensitivity analysis- varying yields and net returns
 - Increased yields and fertilizer costs
Research Takeaways

• **Research takes time**
 - Changes routes
 - Have to narrow scope
 - Takes time to find answers and apply them
 - Hard to not get caught up on little things

• **We learned the research process**
Sources

Questions?