Integrating Environmental Accounting into AgToolsTM

Jenna Way Zach Millang 2014 REACCH Internship Project Oregon State University

Funded through Award #2011-68002-30191 from USDA National Institute for Food and Agriculture

What is *AgTools*TM?

 Evaluates the profitability and feasibility of different management strategies and cropping systems, at the individual farm level.

Suite of Software Programs:

- <u>AgProfit</u>- Determines how changes in input costs, output costs, and yields affect profitability (20 years)
- o <u>AgLease</u>- Establishes equitable crop shares
- <u>AgFinance</u>- Analyzes liquidity, solvency, and repayment capacity (10 years)

Internship Project

Literature Review

- o Environmental effects of agricultural practices
- Direct seed vs. conventional tillage wheat production (PNW)

<u>AgTools[™] Analysis</u>

- o Direct seed vs. conventional till winter wheat-summer fallow rotation, less than 12 inch precipitation zone
- Annual cropping vs. winter-wheat and summer fallow with and without climate change

Literature Review

<u>AgEnvironment Components and Tools</u>

- GHG Emissions, soil erosion, water use, herbicides, pesticides, and fertilizers
- o GHG Emissions- Cool Farm Tool
- o Soil Erosion- USDA Rusle2 and WEPP
- o Pesticides- Cornell University EIQ Equation

Direct Seed vs. Conventional Till WW-SF Production

- o No-till production requires about 4 additional herbicide applications (Esser).
- No-till early averages a higher yield (~70bu/acre) but late no-till produces 20% less (Esser).
- o No Till allows for fewer trips across the field resulting in less fuel consumption (Perry).

Winter Wheat-Summer Fallow Direct Seed vs. Conventional Till Less than 12 inch Precipitation

	Direct Seed	Conservation Tillage	Difference
Total Net Returns	\$378.99	\$259.24	\$119.75
Net Present Value	\$306.80	\$218.06	\$88.74
Sensitivity Analysis			
Total Net Returns	\$245.11	\$259.24	(\$14.13)
Net Present Value	\$220.95	\$218.06	\$2.89

W. Wheat-Summer Fallow vs. Annual Cropping Before and After Climate Change

Before Climate Change

- o W. Wheat-Summer Fallow
 - -12-18 inch precipitation zone
 - -Randomized historical yields (Sherman County)
- Annual Cropping: W. Wheat, Camelina, Canola, Peas
 -Market sensitivity analysis- varying yields and net returns

<u>After Climate Change</u>

o W. Wheat-Summer Fallow

-18-24 inch precipitation zone

-Projected yields from Global Climate Models (Umatilla County)

-Increase Fertilizer costs and sprays, insert insecticides and fungicide

o Annual Cropping: W. Wheat, Camelina, Canola, Peas

-Market Sensitivity analysis- varying yields and net returns -Increased yields and fertilizer costs

Research Takeaways

Research takes time

- o Changes routes
- o Have to narrow scope
- o Takes time to find answers and apply them
- o Hard to not get caught up on little things
- We learned the research process

Sources

- Perry, Ann. March, 2011. Testing No Till Winter Wheat in the Pacific Northwest. USDA-ARS. http://www.ars.usda.gov/is/AR/archive/mar11/wheat0311
 .pdf
- Esser, A.D. May, 2013. No-till and Conventional Tillage Fallow Winter Wheat Production Comparison in the Dryland Cropping Region of Eastern Washington. Journal of the NACAA, Volume 6, Issue 1. http://www.nacaa.com/journal/index.php?jid=227

Questions?