Atmospheric carbon flux measurements for agricultural sites in the Inland Northwest

Heather Baxter, Shelley Pressley, Brian Lamb, Sarah Waldo, Jackie Chi, Patrick O'Keeffe Washington State University

Introduction to Objective 2

- Greenhouse Gas Monitoring Objective
 - Our group:
 - Key questions
 - What are the net greenhouse gas fluxes of CO₂ and N₂O for northwest croplands?
 - How are these fluxes affected by location and crop management systems?
 - Approach
 - Direct measurement of CO₂ and N₂O fluxes using eddy covariance flux methods.
 - Deploy and operate four (current) to six flux towers in the REACCH domain.

What is a Flux?

- How much Carbon or Nitrogen is exchanged between the atmosphere and a crop and soil in terms of mass per unit surface area per unit time (this is the flux).
- Positive flux is from the surface to the atmosphere.
- CO₂ fluxes are usually negative during the day (photosynthesis) and positive at night (respiration).
- N₂O fluxes are positive at all times, but can be very small and highly variable.

My Project

- Objectives
 - Learning principles of eddy covariance.
 - Tower set up and maintenance.
 - Analyzing flux data.
 - Relationships between CO₂ and the environmental conditions.

Methodology: Tower

- Winds contain turbulent eddies which we see or feel as updrafts and downdrafts.
- An updraft carries gases (like CO₂ or N₂O released from the soil) upward away from the surface, while a downdraft carries gases (like CO₂) down to the surface where it can be taken up by the crop.
- The updraft/downdraft speeds and associated concentrations of CO₂ or N₂O can be measured with fast sensors mounted on a tower.
- The net flux is the average of the product of up/down velocity covariance (w') and concentration covariance (C') ($\overline{F} = \overline{w'C'}$), and is usually averaged over 30 minutes.
- This is the Eddy Covariance method

Methodology (cont'd)

- Flux method advantages
 - Provides measurements at the field scale (100's of meters).
 - Operates continuously
 - Doesn't disturb the vegetation.
- Measurement requirements:
 - Tower must be located in a representative field.
 - Field must be large enough to provide a homogeneous upwind measurement area.
 - Sensors must be fast enough to capture the range of updraft/downdraft motions.

METHODOLOGY CONT'D

- Four sites currently in operation:
 - Cook Farm—no till site.
 - Cook Farm South conventional till site.
 - Idaho Site—high rainfall conventional till.
 - Lind—lower rainfall conventional till summer wheat fallow rotation site.

METHODOLOGY CONT'D

• Weather measurements

- Temperature, humidity, solar radiation, pressure, wind speed and direction, and precipitation
- Surface energy measurements
 - Sensible heat flux –transport of heat to/from the surface
 - Latent heat flux—energy transfer due to evapo-transpiration of water
- Canopy Light Interception measurements
 - For use in the CROPSYST model
 - Estimates leaf area index
- Biomass measurements
 - Above ground biomass
- Soil Measurements
 - Soil temperature and moisture

Typical Daily Fluxes at the Lind Site (May 12-21, 2012)

Typical Daily Fluxes at Cook Farm (May 12-21, 2012)

Net carbon sequestration— Cook (May 12-21, 2012)

Cook Sequestration Trend

Cook Biomass Trend

Cook Farm Night Respiration (May 12-21, 2012)

Cook Temperature and Respiration Trend (May 12-21, 2012) • Trend of increasing

- Trend of increasing CO₂ with increasing temperature matches expected literature trend.
- Most closely matches the R₁₀ value of a lightly used mid-European grassland, as found by Michael Bahn, et. al.

Conclusions

- Carbon dioxide, sensible heat, and latent heat exhibit diurnal patterns, as expected.
- Fluxes of CO2 and latent heat at the fallow site (Lind) are much smaller in magnitude (compared to the vegetated site), yet there is still a slight diurnal pattern indicating either reduced biomass growth (weeds) and/or soil microbial activity.
- Preliminary data shows respiration increasing at higher temperatures at Cook farm in this time period as expected.

Future Plans

- Continue same data analyses of flux relationships on longer time periods and for each site to test accuracy through time and compare differences between crop management systems and locations.
- Calculate net annual carbon budget at each site using flux and biomass measurements.

References

- Soil Respiration in European Grasslands in Relation to Climate and Assimilate Supply. Michael Bahn, et. al. Ecosystems, (Dec., 2008), 11(8), pp. 1352-67.
- Whole Plant Respiration and Photosynthesis of Wheat Under Increased CO₂ Concentration and Temperature. Roger M. Gifford. *Global Change Biology*, (1995), pp. 385-396.
- A Brief Practical Guide to Eddy Covariance Flux Measurements. G. Burba, D. Annderson. V. 1.0.1 (2005).