COMPARATIVE ANALYSIS OF CARBON AND NITROGEN MINERALIZATION IN DIVERSE FARMING SYSTEMS

Dr. Dave Huggins

Danika Hill Summer 2013

Research Question

How do different farming systems affect the health of the soil, as shown through the pools of labile carbon and nitrogen?

Palouse Conservation Field Station

- 12th year in five different farming systems
- ART: Agroecosystem Research Trials
 - NAT: Native Agroecosystem Trial
 - Idaho fescue and Bluebunch wheatgrass
 - OAT: Organic Agroecosystem Trial
 - Spring Pea as a green manure
 - PAT: Perennial Agroecosystem Trial
 - Alkar Tall Wheatgrass
 - No Till a (with legume)
 - Winter Wheat, Garbonzo Beans, Spring Wheat
 - No Till b (only cereals)
 - Winter Wheat, Spring Barley, Spring Wheat

Aerial View of ART at PCFS

Purpose

- 24-hour CO₂ burst
- Applicability to Farmers
 - Simply gauge the health of the soil
- Solvita Test (Haney et. al, 2008)

Hypothesis

Carbon mineralization rates would be highest with "healthiest" soils: • Native Prairie Grasses • OAT • PAT • NTa (with legume) • NTb (only cereals)

NAT > OAT > PAT > NTa = NTb

Methodology

- □ Field work:
 - 10-cm depth samples
 Approximately 50 soil cores per plot
- Lab work:
 - Carbon Mineralization
 - Nitrogen Mineralization
 - Total Carbon
 - Total Nitrogen

Carbon Mineralization Incubations

Measurement of the respiration rates (CO_2) of the microbes in the soil

- Carbon dioxide reacts with alkali traps (10.0 mL 1M NaOH) to form CO₃²⁻
- 24 day Incubation:
 Samples taken at days 1, 3, 7, 15, and 24

Titrations

Na⁺ + **OH**⁻ + **CO**₂ → Na⁺ + **CO**₃²⁻ Ba²⁺ + CO₃²⁻ → BaCO₃ (solid) (Campbell et al., 1991; Franzluebbers et al., 2000; Haney et al., 2001)

Other Lab Work

- Nitrogen Mineralization measures the change nitrate (NO₃⁻) and ammonium (NH₄⁺) content of the soil (Liebig et al., 2004)
 - Analyzed at T_0 and days 1, 3, 7, 15 and 24
- Total Carbon (C) and Total Nitrogen (N) (Liebig et al., 2004)
 - Overall assessment of total soil C, N and their ratios among farming systems
 - Analyzed using dry combustion (TrueSpec)

Results: Carbon Mineralization Incubations

CO₂ Burst Predicting Nmin

Franzluebbers et al., 2007

Fig. 3. Relationships of C mineralization during 0–3 d with C mineralization during 0–24 d in soils from Alberta-British Columbia, Maine, Texas, and Georgia. Lower panels are magnifications of the 0 to 500 mg kg⁻¹ range in CMIN_{0.14} for each of the four regions.

Summary and Conclusions

My Hypothesis: NAT > OAT > PAT > NTa = NTb

Actual Results: NTb > OAT = Nta > PAT = NAT

- □ Is is applicable to farmers?
 - General indicator of soil health
 - Not precise enough to measure differences in a mere 24 hr

Future Research:

Determine general range of carbon mineralization rates for public use

Acknowledgements

- My most sincere thank you to Jason Morrow and Dr. David Huggins for their guidance and assistance. Many, many thanks to John Morse, Alex Crump,
- Tabitha Brown, Will Devine, Lauren Young and Margaret Davies for answering my incessant questions and never failing to pause their own work to help me.
- Thank you to the entire staff apart of the REACCH and CRiSSP programs; I never felt that I lacked in support.