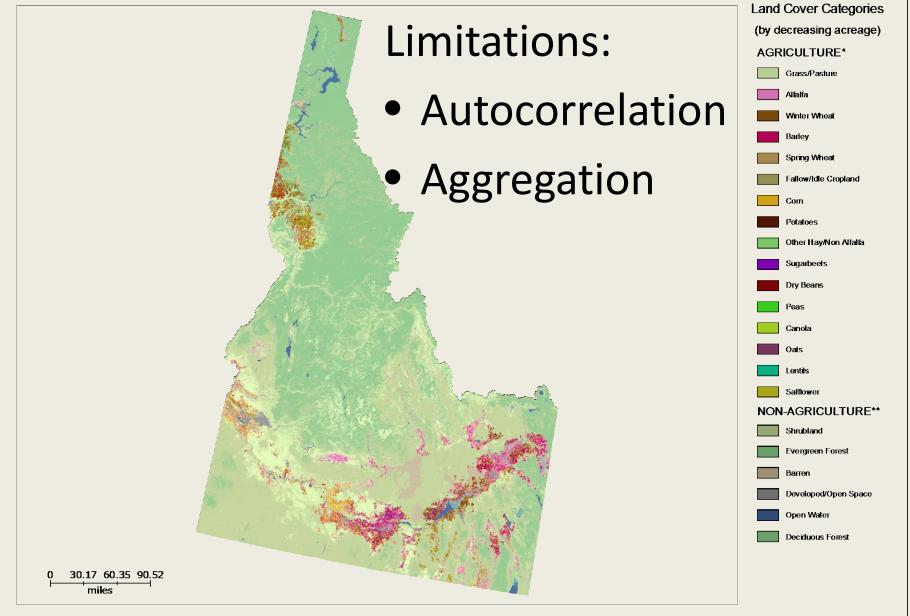


Background

- Wheat is a major crop in Idaho and PNW
- Precipitation, especially in April June, has strong relationship with wheat yields (Schillinger and Papendick 2008)
- Climate now
 - Cool, wet winters and warm, dry summers (Kok et al. 2009; Dalton et al. 2013)
- Future climate projections
 - Expect decrease in summer precipitation (Dalton et al. 2013)

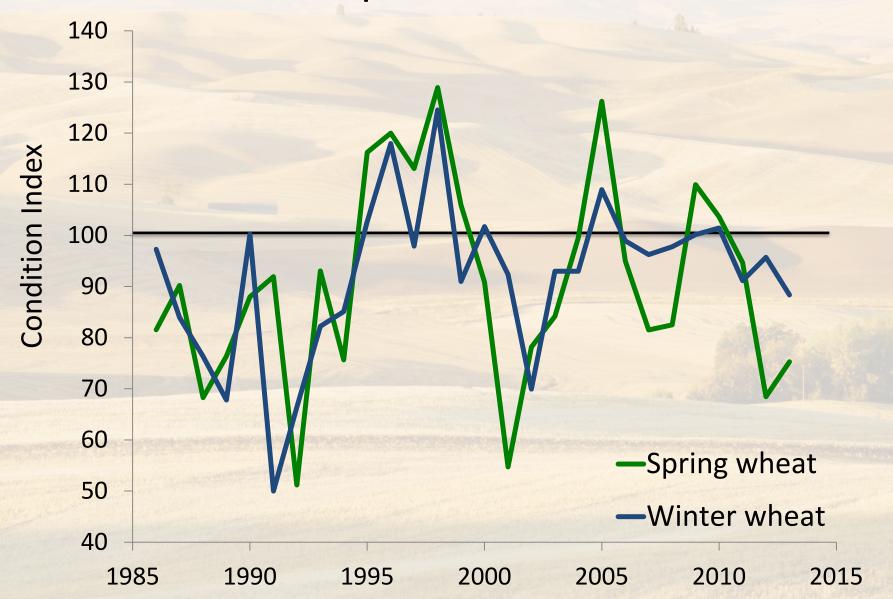
Goals

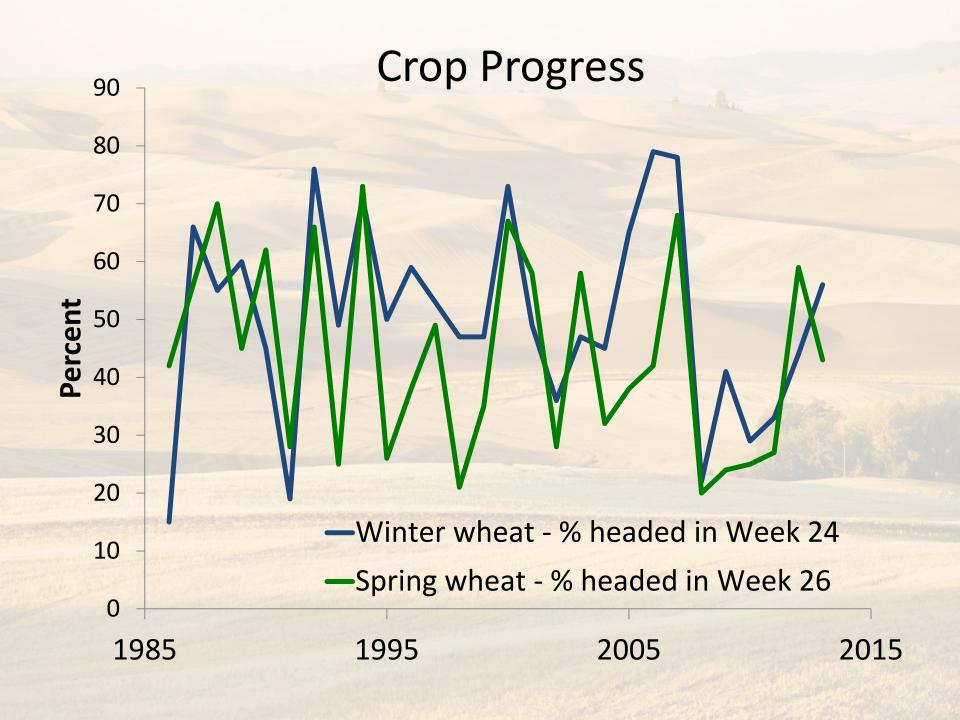
- Compile data from NASS Crop Progress and Condition Reports
- Look for trends in these reports and determine whether they are correlated to wheat production and precipitation data



- Weekly reports April-October
- 1986 2013
- Spring and winter wheat
- Condition
 - % of fields with different yield potentials
- Progress
 - % of fields that have reached a given growth stage

2013 Idaho




Condition Index

	Condition	%		Score		Subtotal
Above normal yields ->	Excellent	12	×	2	=	24
Normal yields -	Good	72	×	1	=	72
Possible yield loss -	Fair	14	×	0	=	0
Heavy yield loss →	Poor	2	×	-1	=	-2
Extreme yield loss ->	Very Poor	0	×	-2	=	0
				Index		94

- Calculated weekly index
- Yearly average

Crop Condition

Analysis

- Compared crop progress and condition to other metrics
 - Yield (Bu/Acre)
 - Acreage production lost (acres planted harvested)
 - Yield insurance loss ratio (total indemnities/total premium)
 - Season precipitation (September-June)
 - Late spring precipitation (April-June)
- Spearman's Rank-Order Correlation Test

The condition index is a representative metric.

Spearman's Rank-order Correlation Test

	Condition Index			
	Winter wheat	Spring wheat		
Yield (BU/ACRE)	0.531, p=0.004	0.538, p=0.003		
Acreage production lost	-0.515, p=0.005	-0.328, p=0.088		
Yield insurance loss ratio	-0.681, p<0.001	-0.635, p<0.001		

The condition index is strongly related to both season and spring precipitation.

Spearman's Rank-order Correlation Test

	Condition Index		
	Winter wheat	Spring wheat	
Season precipitation (Sept-June)	0.435, p=0.021	0.670, p<0.001	
Spring precipitation (April-June)	0.414, p=0.029	0.700, p<0.001	

Crop progress

Spearman's Rank-order Correlation Test

Progress - % headed			
Winter wheat	Spring wheat		
(mid-June)	(end of June)		
_0.312 n=0.106	-0.444, p=0.010		
-0.312, μ-0.100	-0.444, p-0.010		
-0.358 n=0.061	-0.529, p=0.002		
0.338, p=0.001	-0.525, p-0.002		
-0.002, p=0.992	-0.615, p<0.001		
-0.056, p=0.778	-0.400, p=0.021		
-0.098, p=0.621	0.210, p=0.241		
0.181, p=0.387	0.494, p=0.012		
	Winter wheat (mid-June) -0.312, p=0.106 -0.358, p=0.061 -0.002, p=0.992 -0.056, p=0.778 -0.098, p=0.621		

Conclusions

- Wheat condition is impacted by variations in precipitation
 - Strongest relationship found in spring wheat
- Changes in precipitation with climate change could impact wheat production
 - Need to implement water management techniques
 - ➤ Signals need for more winter crops that are economically viable

Acknowledgments

- Kate Painter
- Vince Matthews and Dave Huggins
- John Abatzoglou (UI) and Dave Paul (USDA RMA)
- Bill Price and Chris McIntosh
- Chelsea Walsh

Literature cited

Kok H, Papendick RI, Saxton KE. 2009. STEEP: Impact of long-term conservation farming research and education in Pacific Northwest wheatlands. J Soil Water Conserv. 64:253-264.

National Agricultural Statistics Service (NASS). QuickStats database. Accessed June 2014.

Schillinger WF, Papendick RI. 2008. Then and Now: 125 Years of Dryland Wheat Farming in the Inland Pacific Northwest. *Agron. J.* **100,** S–166.