Effects of Climate Change on Cropping Systems in the Palouse

Austin Wardall, Erin Brooks

Motivation

- Uncertain how future climate change may affect dryland cropping systems in the Pacific Northwest
 - AEZs will likely shift

Motivation and Genesis

Objectives

- Discover how AEZs may shift as 21st century progresses
 - Simulate soil moisture response to future climate scenarios
 - Two climate scenarios
 - Six locations across all AEZs
 - Three cropping systems

Methods

- Spreadsheet hydrology model (Thornthwaite-Mather, 1955)
 - Compare spreadsheet output with observed eddy covariance data at the Cook Farm
 - Use the hydrology model to calculate likelihood of water shortage at each location

Thornthwaite-Mather Model

Precip – Et – Losses = change in Water Storage

Thornthwaite-Mather Model

Inputs:

- Daily Tmax, Tmin, and Precipitation
- Maximum soil available water content
- Crop rotation
 - Crop coefficients
 - Plant date
 - Length of growing season
- Output
 - Daily soil water storage
 - Daily ET
 - Daily Losses
 - Daily Snowmelt

Input Climate Data

- Daily precip, Tmax, Tmin from MACA dataset, CNRM-CM5 model, both RCP 8.5 and 4.5 scenarios
 - RCP:
 - Stands for Representative Concentration
 Pathway
 - Is a projection of greenhouse gas concentrations in the future.

Pullman RCP 8.5

Results

Frequency with which available water capacity is not reached

Prosser

Continued Annual Cropping

Frequency with which available water capacity is not reached

Pullman

Transition to Annual Cropping

Frequency with which available water capacity is not reached Lacrosse RCP 4.5

Transition to Annual Cropping

Frequency with which available water capacity is not reached Lacrosse RCP 8.5

Summary

- Simulations suggest a general transition to more annual cropping in the REACCH region
- Increased overwinter precipitation in the REACCH region
- Earlier plant dates by ~3 weeks
- Average annual statistics are sometimes misleading
- Seasonal differences in climate predictions are important for hydrology

Recommendations

- Develop a grid-based GIS version of the model to visualize the transition in AEZs
- Give farmers access to this information with online tool
- Compare results to a more detailed cropping model (e.g. CropSyst)

Acknowledgements

- Erin Brooks
- Stephen Fricke, John Abatzoglou
- Shelley Pressley, Brian Lamb, Sarah Waldo
- Sanford Eigenbrode