AgToolsTM: An Evaluation Tool for Agricultural Producers Facing Climate Change Jenna Way, Laurie Houston and Clark F. Seavert (Oregon State University)

Introduction

L Case Study Farm

Windy Canyon Farm LLC is a 3,800 acre dry land wheat farm located in a 12" to 18" precipitation zone in the mid-**Columbia Region of Oregon, currently practicing a winter** wheat and summer fallow rotation on owned and leased land.

II. Background

A previous *AgTools*[™] study showed Windy Canyon Farm LLC would be more profitable (over ten year period), by switching from a wheat-fallow rotation to an annual cropping of wheat with camelina, canola, and dry peas.

III. Motivation

With the possibility of climate change resulting in increased winter precipitation, a winter wheat and summer fallow rotation is compared against annual cropping winter wheat with camelina, canola, and dry peas with and without climate change to determine which cropping system is more profitable after projected increased winter wheat yields and increased input costs such as fertility, insecticides and fungicides, as a result of climate change.

Rotations by Field

Table 1. Crop Rotations by Year and by Field for Wheat Fallow System

	Year	Northside	Eastside	Westside	Southside	
		Owned Land		Leased Land		
1	1	Wheat	Wheat	Wheat	Wheat	
	2	Fallow	Fallow	Fallow	Fallow	
	3	Wheat	Wheat	Wheat	Wheat	
	4	Fallow	Fallow	Fallow	Fallow	
1	5	Wheat	Wheat	Wheat	Wheat	
	6	Fallow	Fallow	Fallow	Fallow	
	7	Wheat	Wheat	Wheat	Wheat	
ļ	8	Fallow	Fallow	Fallow	Fallow	
	9	Wheat	Wheat	Wheat	Wheat	0
	10	Fallow	Fallow	Fallow	Fallow	1

Table 2. Crop Rotations by Year and by Field for Annual Cropping System¹

			-				
1	Year	Northside	Eastside	Westside	Southside		
		Owned Land		Leased Land			
	1	Dry Peas	Wheat	Wheat	Camelina		
	2	Wheat	Camelina	Canola	Wheat		
	3	Canola	Wheat	Wheat	Dry Peas		
	4	Wheat	Dry Peas	Camelina	Wheat		
	5	Camelina	Wheat	Wheat	Canola		
	6	Wheat	Canola	Dry Peas	Wheat		
	7	Dry Peas	Wheat	Wheat	Camelina		
	8	Wheat	Camelina	Canola	Wheat		
	9	Canola	Wheat	Wheat	Dry Peas		
	10	Wheat	Dry Peas	Camelina	Wheat		

¹In any given year at least 1,800 acres of winter wheat must be planted along with alternative crops.

Change

	Change								
	Year	Base Operation		Annual Cropping		Base Operation		Annual	
		Cash Flow	Accumulative Net Income	Cash Flow	Accumulative Net Income	Cash Flow	Accumulative Net Income	Cash Flow	
		Without Climate Change				With Climate Change			
	1	\$747,138	\$637,596	\$1,275,889	\$345 <i>,</i> 303	\$454,845	\$1,132,003	\$1,070,799	
	2	\$693,901	\$1,223,228	\$802 <i>,</i> 341	\$757,265	\$520,231	\$1,769,221	\$828 <i>,</i> 056	
	3	\$252,501	\$1,369,008	\$716 <i>,</i> 784	\$1,064,897	\$414,353	\$2,318,826	\$1,200,864	
	4	\$356,193	\$1,617,041	\$425 <i>,</i> 079	\$1,559,722	\$602 <i>,</i> 986	\$2 <i>,</i> 579 <i>,</i> 045	\$785 <i>,</i> 631	
	5	\$448,142	\$1,958,106	\$694 <i>,</i> 176	\$1,805,944	\$353 <i>,</i> 298	\$3,117,153	\$872 <i>,</i> 313	
	6	\$518,966	\$2,369,082	\$632 <i>,</i> 043	\$2,197,921	\$499 <i>,</i> 968	\$3,588,771	\$837,239	
	7	\$407,105	\$2,661,540	\$848 <i>,</i> 317	\$2,408,959	\$325 <i>,</i> 685	\$4,274,336	\$1 <i>,</i> 036,785	
	8	\$613,867	\$3,161,348	\$570 <i>,</i> 204	\$2,784,440	\$489 <i>,</i> 540	\$4,686,576	\$654,034	
1	9	\$70,092	\$3,118,194	\$517 <i>,</i> 482	\$2,999,211	\$328,016	\$5,038,352	\$1,101,045	
	10	\$26,905	\$3,032,582	\$141,477	\$3,331,412	\$444,718	\$5,014,827	\$603 <i>,</i> 551	

II. AgTools[™] Software used in this Study

AgProfit[™] - assesses profitability using existing Oregon State University budget cost and return information for winter wheat, summer fallow, winter camelina, winter canola, and spring dry peas. AgFinance[™] - evaluates additional equipment purchases and employee withdrawals required to support additional crops.

III. Modifications to AgProfit[™] Budget Files

WITHOUT CLIMATE CHANGE

- the future without climate change.

WITH CLIMATE CHANGE

- budgets.

Results

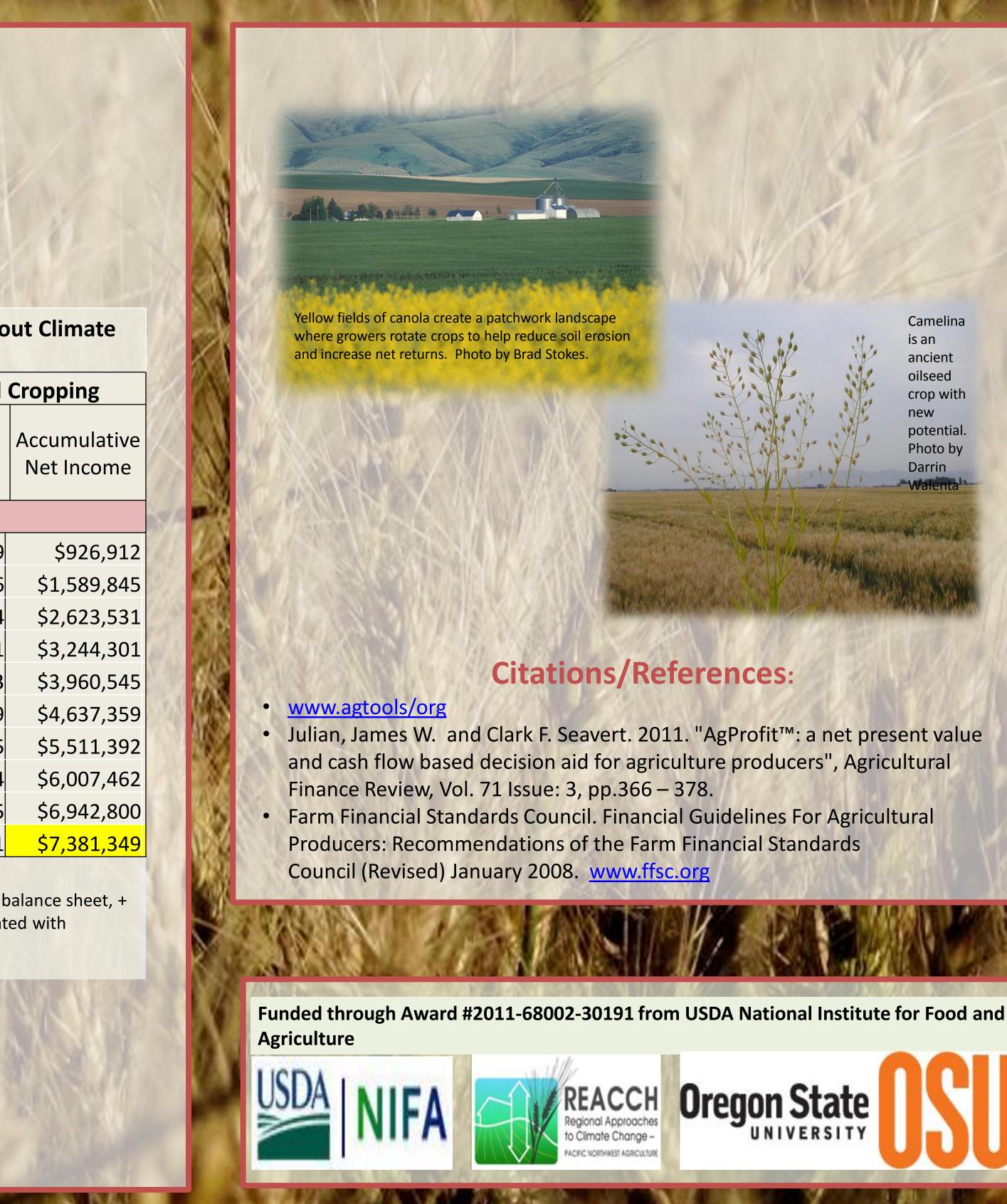
Table 3. Cash Flow² and Accumulative Net Farm Incomes³ by Crop Alternative, With and Without Climate

²Cash flow includes gross incomes minus cash costs plus operating interest.

³Accumulative Net Farm Incomes includes annual cash flows, +/- inventory changes in current assets and liabilities from the balance sheet, + interest from annual operating, intermediate and long-term loans, + capital lease payments and any down payments associated with acquiring a lease, + depreciation.

Methods

I. AgTools[™] (available on line at http://www.agtools.org/)


A suite of software programs used to evaluate the profitability and feasibility of changes in crop rotations and

Winter wheat yields are adjusted to represents actual wheat yields from Umatilla County for 2003 to 2012, then randomized by year to estimate future production for years 2014-2023, assuming past yields will occur in

Camelina, canola, and peas have varying yields and net returns. Yields vary by +/- 20 percent. The price for camelina varies by 40%, 20% for canola, and approximately 10% for peas.

Projected wheat yields for 2014-2023 in Umatilla County from the RCP 4.5 Global Climate Change Models (GCM), Regional Concentration Pathways 4.5 and 8.5 GFDL-ESM2M (GCM 7), are used in the winter wheat

Fertilizer costs were increased by 20 percent, costs for insecticides (\$30/acre) and fungicides (\$25/acre) were added, and the number of sprayer applications increased from one to five in the winter wheat budgets. Camelina, canola, and pea yields and fertilizer costs were increased 20 percent.

