

## N<sub>2</sub>O and CO<sub>2</sub> production in wheat-based cropping systems

Kirill Kostyanovsky (kirya.kostyanovskiy@wsu.edu) WSU, Dave Huggins ARS-USDA, Claudio Stockle WSU, Jeffrey Smith WSU, Jason Morrow WSU, Brian Lamb WSU, Shelley Pressley WSU, Sarah Waldo WSU, David Brown WSU, and Bill Pan WSU

**R** ainfall, irrigation, and soil nitrogen (N) fertilization are factors that drive emissions of the highly potent greenhouse gas nitrous oxide (N<sub>2</sub>O), a major contributor to climate change from agriculture. Changing climate could promote shifts of agroecozones (AEZs) due to increased temperatures, as well as expansion of irrigated agriculture and increased irrigation requirements. An accurate assessment of N<sub>2</sub>O and carbon dioxide (CO<sub>2</sub>) emissions in irrigation scenarios is required for predicting the effects of changes in agricultural management practices on global climate change.

## IMPACT

Soil nitrogen fertilization leads to production of carbon dioxide ( $CO_2$ ) and nitrous oxide ( $N_2O$ ), greenhouse gases that contribute to global climate change. This study increases our understanding of the scale of these emissions in dryland and irrigated systems under conventional tillage and no-tillage. The project is designed to develop better greenhouse gas predictions in order to improve nitrogen fertilization and irrigation strategies to reduce greenhouse gas emissions.

No-till management is a conservation practice that can sequester soil carbon, preserve soil moisture, and reduce erosion. Its effects on greenhouse gas emissions are less well known. Therefore, we conducted a study on greenhouse gas emissions (CO<sub>2</sub> and N<sub>2</sub>O) in response to water and N additions on long-term inland Pacific Northwest research sites

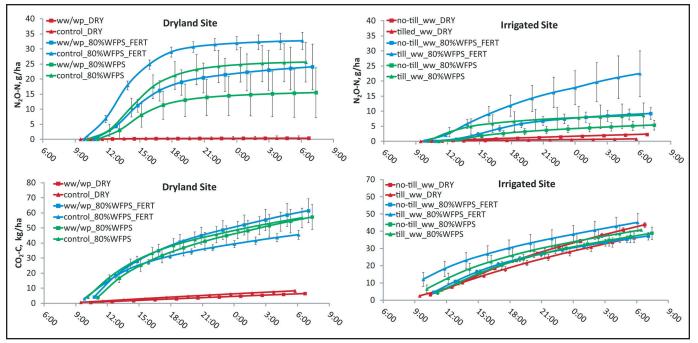
(Pendleton, Oregon; Moro, Oregon; and Kambitsch Farm, Idaho). Cropping systems were conventional tillage (CT) and no-tillage (NT) dryland wheat. A more recently established irrigated site (Prosser, Washington) was also included.

We implemented the system of Li-Cor 8100A automatic chambers coupled with LGR 23r N<sub>2</sub>O analyzer for continuous monitoring of CO<sub>2</sub> and N<sub>2</sub>O emissions in a short-term micro-plot study with the following treatments: (1) no water or fertilizer, (2) water added to 80% water-filled pore space and amended with 150 kg NH<sub>4</sub>NO<sub>3</sub>-N ha<sup>-1</sup>, (3) water added to 80% water-filled pore space, but no fertilizer. Application of N and water took place at 9:00 a.m., and the measurements continued from that time until 7:00 a.m. the following day, for a total of 22 hours (Figure 1). The study was conducted in July 2013, when greenhouse gas response to applied N and water would be expected to be maximal.

In the dryland wheat system scenario,  $N_2O$  peaks were higher for water plus N treatments than for water only treatments (Figure 2). Both water plus N and water only treatments had higher  $N_2O$  emissions than did the no water treatments. CT treatments resulted in higher levels of  $N_2O$  than did NT treatments.



**Figure 1.** Dr. Kirill Kostyanovsky applies water and nitrogen treatments to no-till winter wheat stubble. Automated static chambers monitor subsequent greenhouse gas emissions on micro-plots. Photo by Dave Huggins.


Significantly, N<sub>2</sub>O emissions from water plus N NT treatments were less than those from water only CT treatments.

Emissions of  $CO_2$  tended to increase in the water plus N treatments for both CT and NT, compared to water only NT treatments during the first several hours of the study. All water plus N and water only treatments had higher  $CO_2$  emissions than treatments without water added.

The total losses of N to  $N_2O$  emissions were 0.02% of the total N applied under CT, compared to 0.017% from NT plots with water plus N during the first day of measurement. With water additions only, an equivalent of 0.017% N was lost from CT plots, and an equivalent of 0.010% N was lost from NT plots. Emissions of  $N_2O$  from the plots with no water or N added were negligible.

The irrigated wheat system produced higher  $N_2O$  emissions for both N plus water and water only treatments than for the no water treatments. Water plus N treatments resulted in higher  $N_2O$ peaks than water only treatments (Figure 2). CT treatments resulted in  $N_2O$  emissions 30 to 40% higher than NT treatments.

Emissions of  $CO_2$  were increased in the water plus N treatments and water only treatments compared to the treatments without water added during several initial hours of the study. Water plus N CT treatments also had higher  $CO_2$  emissions than did NT treatments during several initial hours and then decreased to the level of  $CO_2$  emissions from treatments with no water added.



**Figure 2.** Cumulative emissions of  $N_2O$  and  $CO_2$  during the first day of measurements. Treatments included water only and water plus nitrogen (150 kg N ha-1) under dryland and irrigated no-tillage and conventional tillage management systems.

Approximately 0.015% of the total N applied was lost to  $N_2O$  emissions under CT compared to 0.006% under NT with water and N additions during the first day of measurement. About 0.006% of the total N applied was lost from the CT with only water addition and an equivalent of 0.004% N from NT with only water additions. Emissions of  $N_2O$  from the plots with no water or N added were 0.001% of the total N applied for CT and NT during the first day of measurements.

Overall, emissions of  $N_2O$  and  $CO_2$  following additions of water plus N and water only were higher from the dryland sites than from the irrigated site. This shows that initial wetting of soil under dryland conditions results in higher spikes of microbial activity than it does on irrigated sites, leading to higher emissions. Emissions of  $CO_2$  and  $N_2O$  were likely stimulated by  $NH_4NO_3$  application, due to increased microbial activity from nitrification and denitrification processes, resulting in increased organic matter decomposition in the semi-saturated soil. The processes were more pronounced in CT than NT plots, likely because higher rates of organic matter decomposition and slower internal soil water drainage lead to higher cumulative  $N_2O$  and  $CO_2$  emissions. The study demonstrated the significance of NT for reduction of  $N_2O$  emissions during fertilization and irrigation events as compared to CT.



Divided slopes and cross-slope farming on hills in Eastern Washington. Photo by Sylvia Kantor.